Skip to main content
Log in

A new basal zatracheid temnospondyl from the early Permian Chemnitz Fossil Lagerstätte, central-east Germany

  • Research Paper
  • Published:
PalZ Aims and scope Submit manuscript

Abstract

A new zatracheid temnospondyl adds to the fossil-rich T0 assemblage of the Chemnitz Fossil Lagerstätte (Chemnitz Basin, Sakmarian–Artinskian transition). The skeleton was found in basal air-fall tuffs of the Zeisigwald Tuff (Leukersdorf Formation) and consists of the almost complete skull roof in dorsal view, parts of the occiput, fore and hind limbs, numerous presacral vertebrae and ribs, parts of the pelvic girdle and ventral scales. The new taxon Chemnitzion richteri gen. nov. et sp. nov. is proposed due to the following autapomorphic characters: (1) postorbital skull very short, about five times shorter than the preorbital skull; (2) elongate and robust hindlimbs, with femur length reaching almost half of the skull length. A phylogenetic analysis finds the new taxon at the base of a monophyletic Zatracheidae, forming a trichotomy with Acanthostomatops vorax and the more derived zatracheids [Zatrachys serratus + (Dasyceps bucklandi + D. microphthalmus)]. The animal was part of a diverse trophic web of plants, animals and microorganisms. Various vertebrates, arthropods and gastropods constituted a vital community that lived in a dense, seasonally influenced forest habitat dominated by tree-sized ferns, calamitaleans, medullosans and cordaitaleans. The temnospondyl’s death and taphonomic background is closely related to the ash-cloud deposition following a phreatoplinian eruption. The following massive pyroclastic flow finally entombed the moist forest and intensively heated all enclosed organic remnants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(adapted from Rößler et al. 2012a, b)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Artwork by Frederik Spindler

Similar content being viewed by others

References

  • Barthel, M. 1976. Die Rotliegendflora Sachsens. Abhandlungen Des Staatlichen Museums Für Mineralogie Und Geologie Dresden 24: 1–190.

    Google Scholar 

  • Boy, J.A. 1989. Über einige Vertreter der Eryopoidea (Amphibia: Temnospondyli) aus dem europäischen Rotliegend (?höchstes Karbon-Perm) 2. Acanthostomatops. Paläontologische Zeitschrift 63: 133–151.

    Article  Google Scholar 

  • Broom, R. 1913. Studies on the Permian temnospondylous stegocephalians of North America. Bulletin of the American Museum of Natural History 32: 563–696.

    Google Scholar 

  • Broutin, J., J. Doubinger, G. Farjanel, P. Freytet, H. Kerp, J. Langiaux, M.-L. Lebreton, S. Sebban, and S. Satta. 1990. Le renouvellement des flores au passage Carbonifère Permien: approches stratigraphique, biologique, sédimentologique. Comptes Rendus De L’académie Des Sciences (ser. Ll) 311: 1563–1569.

    Google Scholar 

  • Case, E.C. 1911. Revision of the Amphibia and Pisces of the Permian of North America. Carnegie Institution of Washington Publication 146: 1–179.

    Google Scholar 

  • Cohen, K.M., S.C. Finney, P.L. Gibbard & J.-X. Fan 2013. The ICS International Chronostratigraphic Chart. Episodes 36: 199–204.

    Article  Google Scholar 

  • Cope, E.D. 1882. The rhachitomous Stegocephalia. American Naturalist 16: 334–335.

    Google Scholar 

  • Cope, E.D. 1896. The reptilian order Cotylosauria. Proceedings of the American Philosophical Society 34: 436–457.

    Google Scholar 

  • Credner, H. 1883. Die Stegocephalen aus dem Rothliegenden des Plauen’schen Grundes bei Dresden. Vierter Theil. Zeitschrift der Deutschen Geologischen Gesellschaft 35: 275–300.

    Google Scholar 

  • Di Michele, W.A., and H.J. Falcon-Lang. 2011. Pennsylvanian ‘Fossil Forests’ in Growth Position (T0 assemblages): Origin, Taphonomic bias and Palaeoecological Insights. Journal of the Geological Society 168: 585–605. https://doi.org/10.1144/0016-76492010-103.

    Article  Google Scholar 

  • Di Michele, W. A., N. J. Tabor, D. S. Chaney, and W. J. Nelson. 2006. From wetlands to wet spots: Environmental tracking and the fate of Carboniferous elements in Early Permian tropical floras. In Wetlands through time, Geological Society of America Special Papers vol. 399, eds. S. F. Greb, and W. A. Di Michele, 223–248).

  • Döring, H., F. Fischer, and R. Rößler. 1999. Sporostratigraphische Korrelation des Rotliegend im Erzgebirge-Becken mit dem Permprofil des Donezk-Beckens. Veröffentlichungen des Museums für Naturkunde Chemnitz 22: 29–56.

    Google Scholar 

  • Dunlop, J.A., and R. Rößler. 2013. The youngest trigonotarbid Permotarbus schuberti n. gen., n. sp. from the Permian of Chemnitz in Germany. Fossil Record 16: 229–243.

    Article  Google Scholar 

  • Dunlop, J.A., D.A. Legg, P.A. Selden, V. Fet, J.W. Schneider, and R. Rößler. 2016. Permian scorpions from the Petrified Forest of Chemnitz Germany. BMC Evolutionary Biology 16: 72. https://doi.org/10.1186/s12862-016-0634-z.

    Article  Google Scholar 

  • Feng, Z., R. Rößler, V. Annacker, and J.-Y. Yang. 2014. Micro-CT Investigation of a Seed Fern (probable medullosan) Fertile Pinna from the Early Permian Petrified Forest in Chemnitz, Germany. Gondwana Research 26: 1208–1215. https://doi.org/10.1016/j.gr.2013.08.005.

    Article  Google Scholar 

  • Fischer, F. 1991. Das Rotliegende des ostthüringisch-westsächsischen Raumes (Vorerzgebirgs-Senke, Nordwestsächsischer Vulkanitkomplex, Geraer Becken). Ph.D. thesis, TU Bergakademie Freiberg, unpublished, pp. 1–158.

  • Geinitz, H.B., and J.V. Deichmüller. 1882. Die Saurier der unteren Dyas von Sachsen. Palaeontographica 29: 1–46.

    Google Scholar 

  • Kerp, H., R. Noll, and D. Uhl. 2007. Vegetationsbilder aus dem saarpfälzischen Permokarbon. In: Kohlesümpfe, Seen und Halbwüsten. Dokumente einer rund 300 Millionen Jahre Lebewelt zwischen Saarbrücken und Mainz, vol. 10. eds. Schindler, T., and U. H. J. Heidtke, 76–109. Pollichia, Sonderveröffentlichung.

  • Kretzschmar, R., V. Annacker, S. Eulenberger, B. Tunger, and R. Rößler. 2008. Erste wissenschaftliche Grabung im Versteinerten Wald von Chemnitz—ein Zwischenbericht. Freiberger Forschungsheft C528: 25–55.

    Google Scholar 

  • Kroner, U., and R.L. Romer. 2013. Two plates—many subduction zones: the Variscan orogeny reconsidered. Gondwana Research 24: 298–329.

    Article  Google Scholar 

  • Langston, W. 1953. Permian amphibians from New Mexico. University of California Publications in Geological Sciences 29: 349–416.

    Google Scholar 

  • Löcse, F., U. Linnemann, G. Schneider, M. Merbitz, and R. Rößler. 2019. First U-Pb LA-ICP-MS zircon ages and zircon morphology investigations assessed from a volcano-sedimentary complex of the mid-European Variscids (Pennsylvanian, Flöha Basin, SE Germany). International Journal of Earth Sciences 108 (2): 713–733.

    Article  Google Scholar 

  • Löcse, F., J. Rötzler, B. Härtel, U. Linnemann, G. Schneider, and R. Rößler. 2020. Geologie, Geochemie und LA-ICP-MS U-Pb Alter jungpaläozoischer Eruptionszentren am NW-Rand des Erzgebirges (Sachsen)—der Obermühlbach-Vulkan. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften (Journal of Applied Regional Geology) 171 (4): 443–480.

    Article  Google Scholar 

  • Luthardt, L., R. Rößler, and J.W. Schneider. 2016. Palaeoclimatic and site-specific conditions in the early permian fossil forest of chemnitz—sedimentological, geochemical and palaeobotanical evidence. Palaeogeography, Palaeoclimatology, Palaeoecology 441: 627–652.

    Article  Google Scholar 

  • Luthardt, L., R. Rößler, and J.W. Schneider. 2017. Tree-ring analysis elucidating palaeo-environmental effects captured in an in situ fossil forest—the last 80 years within an early Permian ecosystem. Palaeogeography, Palaeoclimatology, Palaeoecology 487: 278–295.

    Article  Google Scholar 

  • Luthardt, L., M. Hofmann, U. Linnemann, A. Gerdes, L. Marko, and R. Rößler. 2018. A new U-Pb zircon age and a volcanogenic model for the early Permian Chemnitz Fossil Forest. International Journal of Earth Sciences 107 (7): 2465–2489.

    Article  Google Scholar 

  • Luthardt, L., J. Galtier, B. Meyer-Berthaud, V. Mencl, and R. Rößler. 2021. Medullosan seed ferns of seasonally-dry habitats: old and new perspectives on enigmatic elements of Late Pennsylvanian–early Permian intramontane basinal vegetation. Review of Palaeobotany and Palynology 288: 104400.

    Article  Google Scholar 

  • Maddison, W.P., and D.R. Maddison. 1992. MacClade: analysis of phylogeny and character evolution. Sunderland: Sinauer.

    Google Scholar 

  • Marjanović, D., and M. Laurin. 2019. Phylogeny of Paleozoic limbed vertebrates reassessed through revision and expansion of the largest published relevant data matrix. PeerJ 6: e5565.

    Article  Google Scholar 

  • Milner, A.R. 1993. The Paleozoic relatives of lissamphibians. Herpetological Monographs 7: 8–27.

    Article  Google Scholar 

  • Milner, A.R., and R.R. Schoch. 2006. Stegops, a problematic spiky-headed temnospondyl. Journal of Vertebrate Paleontology 27 (3): 101A.

    Google Scholar 

  • Milner, A.R., J. Klembara, and O. Dostál. 2007. A zatrachydid temnospondyl from the lower Permian of the Boskovice Furrow in Moravia (Czech Republic). Journal of Vertebrate Paleontology 27: 711–715.

    Article  Google Scholar 

  • Montañez, I.P., N.J. Tabor, D. Niemeier, W.A. DiMichele, T.D. Frank, C.R. Fielding, J.L. Isbell, L.P. Birgenheier, and M.C. Rygel. 2007. CO2-forced climate and vegetation instability during Late Paleozoic deglaciation. Science 315 (5808): 87–91.

    Article  Google Scholar 

  • Olson, E.C. 1965. Zatrachys serratus Cope (Amphibia: Labyrinthodontia) from McClain County. Oklahoma Geology Notes 25: 91–97.

    Google Scholar 

  • Paton, R.L. 1975. A lower Permian temnospondylous amphibian from the English Midlands. Palaeontology 18: 831–845.

    Google Scholar 

  • Riedel, L., and G. Urban. 1989. Neues zur Fundgeschichte der Kieselhölzer von Karl-Marx-Stadt. Veröffentlichungen des Museums für Naturkunde Karl-Marx-Stadt 13: 3–5.

    Google Scholar 

  • Romer, A.S. 1947. Review of the Labyrinthodontia. Bulletin of the Museum of Comparative Zoology Harvard College 99: 1–368.

    Google Scholar 

  • Romer, A.S. 1966. Vertebrate paleontology, 3rd ed. Chicago: University of Chicago Press.

    Google Scholar 

  • Roscher, M., and J. W. Schneider. 2006. Early Pennsylvanian to late Permian climatic development of central Europe in a regional and global context. In Non-Marine Permian Biostratigraphy and Biochronology. Geological Society of London, Special Publications, vol. 265. eds. S. G. Lucas, G. Cassinis, and J. W. Schneider, 95–136.

  • Rößler, R. 2000. The late Palaeozoic tree fern Psaronius—an ecosystem unto itself. Review of Palaeobotany and Palynology 108: 55–74.

    Article  Google Scholar 

  • Rößler, R. 2021. The most entirely known Permian terrestrial ecosystem on Earth—kept by explosive volcanism. Palaeontographica Abt B 303 (1–3): 1–75.

    Google Scholar 

  • Rößler, R., R. Kretzschmar, V. Annacker, and S. Mehlhorn. 2009. Auf Schatzsuche in Chemnitz—Wissenschaftliche Grabungen ‘09. Veröffentlichungen des Museums für Naturkunde Chemnitz 32: 25–46.

    Google Scholar 

  • Rößler, R., Z. Feng, and R. Noll. 2012a. The largest calamite and its growth architecture—Arthropitys bistriata from the Permian Petrified forest of Chemnitz. Review of Palaeobotany and Palynology 185: 64–78.

    Article  Google Scholar 

  • Rößler, R., T. Zierold, Z. Feng, R. Kretzschmar, M. Merbitz, V. Annacker, and J.W. Schneider. 2012b. A snapshot of an early permian ecosystem preserved by explosive volcanism: new results from the petrified forest of Chemnitz, Germany. Palaios 27: 814–834.

    Article  Google Scholar 

  • Rößler, R., M. Merbitz, V. Annacker, L. Luthardt, R. Noll, R. Neregato, and R. Rohn. 2014. The root systems of Permian arborescent sphenopsids: evidence from the Northern and Southern hemispheres. Palaeontographica Abt B 291 (4–6): 65–107.

    Article  Google Scholar 

  • Rößler, R. 2006. Two remarkable Permian petrified forests: correlation, comparison and significance. In Non-Marine Permian Biostratigraphy and Biochronology. Geological Society of London, Special Publications, vol. 265. eds. S. G. Lucas, G. Cassinis, and J. W. Schneider, 39–63.

  • Schneider, J.W., R. Rößler, and B.G. Gaitzsch. 1995. Timelines of late Variscan volcanism—a holostratigraphic synthesis. Zentralblatt für Geologie und Paläontologie (Teil i) 1994 (5/6): 477–490.

    Google Scholar 

  • Schneider, J.W., F. Körner, M. Roscher, and U. Kroner. 2006. Permian climate development in the Northern Peri-Tethys Area—the Lodève basin, French Massif Central, Compared in a European and Global Context. Palaeogeography, Palaeoclimatology, Palaeoecology 240: 161–183.

    Article  Google Scholar 

  • Schneider, J.W., S.G. Lucas, R. Werneburg, and R. Rößler. 2010. Euramerican late Pennsylvanian/early Permian arthropleurid/tetrapod associations—implications for the habitat and paleobiology of the largest terrestrial arthropod. New Mexico Museum of Natural History and Science Bulletin 49: 49–70.

    Google Scholar 

  • Schneider, J.W., S.G. Lucas, F. Scholze, S. Voigt, L. Marchetti, H. Klein, S. Opluštil, R. Werneburg, V.K. Golubev, J.E. Barrick, T. Nemyrovska, A. Ronchi, M.O. Day, V.V. Silantiev, R. Rößler, H. Saber, U. Linnemann, V. Zharinova, and S.-Z. Shen. 2020. Late Paleozoic–early Mesozoic continental biostratigraphy—links to the Standard Global Chronostratigraphic Scale. Palaeoworld 29: 186–238. https://doi.org/10.1016/j.palwor.2019.09.001.

    Article  Google Scholar 

  • Schneider, J. W., R. Rößler, and F. Fischer. 2012. Rotliegend des Chemnitz-Beckens (syn. Erzgebirge-Becken). In Stratigraphie von Deutschland X. Rotliegend. Teil I: Innervariscische Becken, ed. Deutsche Stratigraphische Kommission. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften (vol. 61, pp. 530–588)

  • Schoch, R.R. 1997. Cranial anatomy of the Permian temnospondyl amphibian Zatrachys serratus Cope 1878, and the phylogenetic position of the Zatracheidae. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 206: 223–248.

    Article  Google Scholar 

  • Schoch, R.R. 2013. The evolution of major temnospondyl clades: an inclusive phylogenetic analysis. Journal of Systematic Palaeontology 11 (6): 673–705.

    Article  Google Scholar 

  • Schoch, R.R., and A.R. Milner. 2014. Handbook of paleoherpetology. Part 3A2. Temnospondyli I. Munich: Verlag Friedrich Pfeil.

    Google Scholar 

  • Spindler, F., R. Werneburg, J.W. Schneider, L. Luthardt, V. Annacker, and R. Rößler. 2018. First arboreal ’pelycosaurs’ (Synapsida: Varanopidae) from the early Permian Chemnitz Fossil Lagerstätte, SE Germany, with a review of varanopid phylogeny. PalZ. Paläontologische Zeitschrift 92 (2): 315–364.

    Article  Google Scholar 

  • Steen, M.C. 1937. On Acanthostoma vorax Credner. Proceedings of the Zoological Society London B107: 491–500.

    Article  Google Scholar 

  • Sterzel, J.T. 1918. Die organischen Reste des Kulms und des Rotliegenden der Gegend von Chemnitz. Abhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften (Mathematisch-Physikalische Klasse) 35 (5): 205–315.

    Google Scholar 

  • Swofford, D. 1991. PAUP: phylogenetic analysis using parsimony, version 3.1. Champaign: Illinois Natural History Survey.

    Google Scholar 

  • Tabor, N.J., and C.J. Poulsen. 2008. Palaeoclimate across the late Pennsylvanian–early Permian tropical palaeolatitudes: a review of climate indicators, their distribution, and relation to palaeophysiographic climate factors. Palaeogeography, Palaeoclimatology, Palaeoecology 268: 293–310.

    Article  Google Scholar 

  • Tichomirowa, M., A. Gerdes, M. Lapp, D. Leonhardt, and M. Whitehouse. 2019. The chemical evolution from older (323–318 Ma) towards younger highly evolved tin granites (315–314 Ma)—sources and metal enrichment in Variscan granites of the Western Erzgebirge (Central European Variscides, Germany). Minerals 2019 (9): 769. https://doi.org/10.3390/min9120769.

    Article  Google Scholar 

  • Urban, M., and D.S. Berman. 2007. First occurrence of the Late Paleozoic amphibian Zatrachys serratus (Temnospondyli, Zatrachydidae) in the eastern United States. Annals of the Carnegie Museum 76: 157–164.

    Article  Google Scholar 

  • von Huene, F. 1910. Neubeschreibung des permischen Stegocephalen Dasyceps bucklandi (Lloyd) aus Kenilworth. Geologisch-Paläontologische Abhandlungen 8: 325–338.

    Google Scholar 

  • von Zittel, K.A. 1888. Handbuch der Paläontologie. 1. Abtheilung: Paläozoologie. Third volume Vertebrata (Pisces, Amphibia, Reptilia, Aves), 1–598. Berlin: Oldenbourg.

    Google Scholar 

  • Witzmann, F., and R.R. Schoch. 2006. Skeletal development of the temnospondyl Acanthostomatops vorax from the Lower Permian Döhlen Basin of Saxony. Transactions of the Royal Society of Edinburgh, Earth Sciences 96: 365–385.

    Article  Google Scholar 

  • Witzmann, F., R. Schoch, and A.R. Milner. 2007. The origin of the Dissorophoidea—an alternative perspective. Journal of Vertebrate Paleontology 27 (3): 167A.

    Google Scholar 

  • Yates, A.M., and A.A. Warren. 2000. The phylogeny of the ‘higher’ temnospondyls (Vertebrata: Choanata) and its implications for the monophyly and origins of the Stereospondyli. Zoological Journal of the Linnean Society 128 (1): 77–121.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support by the Chemnitz excavation team, including Ralph Kretzschmar, Volker Annacker and Mathias Merbitz, for professional fieldwork, saving of the finds, recording crucial information and many fruitful discussions, and Thorid Zierold encouraged the project management. We express special thanks to Georg Sommer, Schleusingen, for skeleton preparation and Frederik Spindler, Denkendorf, for the fine artwork of Fig. 15. We thank Irina Ruf, former University of Bonn, for her help to provide X-ray scans of the holotype. We are further indebted to Maibrit Scheibel, Annika Buitink and Thomas Israel. David Marjanović, Luisa Merten and Luisa Pusch are thanked for help with the phylogenetic analysis, Frank Löcse checked statistics to calculate tuff compaction, Steffen Trümper kindly assisted with figure preparation, and Burkhard Müller facilitated the naming of the find. This research was supported by the Deutsche Forschungsgemeinschaft (DFG grants RO 1273-3/1 to R.R. and SCHN 408/20 to J.W.S.). The manuscript benefited greatly from the constructive reviews provided by Bryan Gee and Jade Atkins. This publication contributes to the tasks of the “Nonmarine–Marine Correlation Working Group” of the Subcommissions on Carboniferous Stratigraphy (SCCS), Permian Stratigraphy (SPS), and Triassic Stratigraphy (STS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Werneburg.

Additional information

Handling Editor: Nadia Fröbisch.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 kb)

Supplementary file2 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Werneburg, R., Witzmann, F., Schneider, J.W. et al. A new basal zatracheid temnospondyl from the early Permian Chemnitz Fossil Lagerstätte, central-east Germany. PalZ 97, 105–128 (2023). https://doi.org/10.1007/s12542-022-00624-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12542-022-00624-8

Keywords

Navigation