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1. Institut für Theoretische Physik der Universität Stuttgart

2008

http://itp1.uni-stuttgart.de
http://www.uni-stuttgart.de




Contents

1. Introduction 5

2. Time-dependent variational principle 9
2.1. Least action principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2. McLachlan variational principle . . . . . . . . . . . . . . . . . . . . . . . 12

2.3. Conservation laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1. Conservation of norm and energy . . . . . . . . . . . . . . . . . . 17

2.4. Error estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3. Application of the TDVP to GWPs 19

4. Inequality constrained TDVP 27
4.1. Inequality constrained TDVP on arbitrary trial functions . . . . . . . . . 28

4.2. Inequality constrained TDVP applied to GWP . . . . . . . . . . . . . . . 31

4.3. 2D diamagnetic hydrogen atom . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.1. Error introduced by the constraints . . . . . . . . . . . . . . . . . 39

4.3.2. Comparison with exact computations . . . . . . . . . . . . . . . . 40

5. Wave packet dynamics in the hydrogen atom 47
5.1. Regularization of the hydrogen atom . . . . . . . . . . . . . . . . . . . . 48

5.1.1. Eigenstates of the regularized hydrogen atom . . . . . . . . . . . 49

5.2. Restricted Gaussian wave packets in Kustaanheimo-Stiefel coordinates . . 51

5.3. Analytical wave packet dynamics in the hydrogen atom . . . . . . . . . . 54

5.3.1. Propagation of wave packets without well defined angular momen-
tum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.2. Propagation of wave packets with conserved angular momentum
component lz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.3. Wave packet propagation with conserved angular momentum l2, lz 66

6. Wave packet dynamics in the hydrogen atom in external fields 71
6.1. Regularized hydrogen atom in external fields . . . . . . . . . . . . . . . . 71

6.2. Variational GWP dynamics in the diamagnetic hydrogen atom . . . . . . 73

6.3. Variational GWP dynamics in the hydrogen atom in crossed fields . . . . 81

3



Contents

7. Wave packet dynamics of Bose-Einstein condensates with attractive 1/r
interaction 85
7.1. TDVP for BECs with attractive 1/r interaction . . . . . . . . . . . . . . 87
7.2. Linear stability of the bifurcating states . . . . . . . . . . . . . . . . . . . 88
7.3. Dynamics of the condensate . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.3.1. Variational approach . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.3.2. Exact time-dependent calculations with the split-operator method 95

8. Dynamics of Bose-Einstein condensates with dipolar interaction 105
8.1. TDVP for the dipolar BEC . . . . . . . . . . . . . . . . . . . . . . . . . 107
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1. Introduction

The effort of a numerically exact solution of the time-dependent Schrödinger equation
increases exponentially with the dimension of the investigated system and approximate
methods are needed. Different approaches to this problem are subject of investigation
ranging from semiclassical methods as the initial value representation [1, 2] to methods
based on the time-dependent variational principle (TDVP), as e.g. the multi configu-
rational time-dependent Hartree method [3] or the method of Gaussian wave packet
propagation [4–9].

The method of Gaussian wave packet propagation introduced by Heller [10] allows for
a wide range of different levels of approximation. In its simplest versions [11] it presents
the starting point for the initial value representations, whereas the more sophisticated
versions [5–9, 12, 13] based on the TDVP allow for accurate computations of quantum
dynamics. The idea of the Gaussian wave packet method is to approximate the time evo-
lution of a quantum mechanical wave function by the evolution of Gaussian wave packets.
Within this approximation it is assumed that an initially Gaussian wave packet (GWP)
stays Gaussian for all times, i.e. the GWP is moving in an effective harmonic, possibly
time-dependent potential, which fits the original potential of the underlying system. The
time evolution of the wave packet is given by the time evolution of its parameters, which
describe the shape and position of the GWP, like width, phase, center, and momentum
[10]. This procedure allows for the reduction of the time-dependent Schrödinger equation
to a set of ordinary first-order differential equations for the parameters of the GWPs.

For a single GWP, the GWP method is generally only valid for short time propagation.
The approximation can significantly be improved if a superposition of GWPs is used and
these GWPs are propagated in concert by the TDVP, since the number of adjustable
parameters is increased and the overall wave function is no longer restricted to a Gaussian
shape [6–9]. The time-dependent variational principle is presented in general in chapter
2 and is applied to a superposition of GWPs in chapter 3.

Although being rather accurate, the equations of motion for the Gaussian parameters
as obtained from the time-dependent variational principle, have the drawback, that they
become ill-conditioned from time to time during the integration, depending on how many
GWP are used. The reasons for the ill-conditioned behavior of the differential equations
are near singularities of a matrix [6, 7, 9, 14, 15] that has to be inverted after each time
step of integration to determine the coefficients of the effective potential. Using step size
control the time steps of the integration algorithm can become extremely small making
the method impracticably slow. In the worst case even a failure of the numerical matrix
inversion or the further integration may occur.
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1. Introduction

Different solutions to this numerical problem have been proposed [6, 7, 9, 14–17],
however, none of the suggested methods is fully satisfactory, each of them having some
drawbacks or being inapplicable in some situations. These numerical problems reduce
the general applicability of the method to quantum systems.

It is one of the aims of this thesis to find a method to ameliorate the numerical behavior
of the equations of motion to make the method of GWP propagation numerically efficient
and universally applicable [13]. A solution to this problem based on the introduction of
adequate constraints is presented in chapter 4.

The GWP method has been applied mainly in molecular [4, 5, 10, 15, 18, 19] and
in nuclear physics [20, 21]. Another goal of this work is to extend the application of
the GWP method to atomic systems. In particular we are interested in the hydro-
gen atom with and without external fields. At first sight the choice of Gaussian wave
packet trial functions appears to be not especially convenient, since the Coulomb poten-
tial is far from being harmonic. Nevertheless, in the one-dimensional Coulomb model
potential Gaussian wave packet propagation has already been performed [22–24] with
good but not exact results. Therefore, a procedure for exact wave packet dynamics
in the hydrogen atom is desired. There exists a regularization procedure [25, 26] that
transforms the three-dimensional hydrogenic Schrödinger equation to a four-dimensional
harmonic oscillator problem. The extension from three to four dimensions introduced
by the regularized Kustaanheimo-Stiefel coordinates, implies an additional constant of
motion which manifests itself as a restriction on physically allowed wave functions. The
Gaussian wave packets present exact solutions to the regularized hydrogen atom if they
are able to satisfy the restriction, i.e. the impact of the restriction on Gaussian wave
packets must be investigated first. The question arises whether four-dimensional GWPs
in Kustaanheimo-Stiefel coordinates can fulfill the restriction, such that the set of re-
stricted GWPs is still a complete basis. In chapter 5 it is shown that the answer is
yes.

The analytical solvability of the hydrogen atom is lost when an external magnetic
and crossed electric and magnetic fields are applied. Both systems show a transition
from regular to chaotic behavior of the underlying classical dynamics and allow for
the investigation of “quantum chaos”, i.e. the influence of classical chaos on quantum
spectra [27–30]. External electromagnetic fields applied to the hydrogen atom allow for
the regularization using Kustaanheimo-Stiefel coordinates in the same manner as for the
field-free hydrogen atom. The external fields introduce anharmonic perturbations to the
harmonic potential resulting from the Coulomb potential, and the restricted GWPs are
no longer exact solutions of the system and their evolution is determined variationally. In
this thesis, in particular the diamagnetic hydrogen atom which presents a system with
two non separable degrees of freedom and the hydrogen atom in crossed electric and
magnetic fields with three non separable degrees of freedom are investigated by means
of the GWP propagation in chapter 6.

A further class of systems where the application of variational methods using Gaussian
wave packet trial functions are common are Bose-Einstein condensates [31–33] in the
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mean-field limit, where the system is described by the Gross-Pitaevskii equation. The
Gross-Pitaevskii equation is a nonlinear equation, and qualitatively different modes of
dynamics, viz. oscillations and collapse of the condensate, appear. The GWP trial
functions are mainly used in the time-independent version [31, 32] to reduce the mean-
field energy functional to a function of the Gaussian parameters and the stationary
points of the mean-field energy present the variational stationary states of the Gross-
Pitaevskii equation. But also time-dependent computations have been performed [33].
The isotropic short-range contact interaction between the particles results from the s-
wave scattering and the strength can be varied by changing the scattering length via a
Feshbach resonance [34, 35].

In this thesis the dynamics of Bose-Einstein condensates with additional long-range
particle interactions are investigated. Two different kinds of long-range particle inter-
actions are discussed. An isotropic electromagnetically induced long range attractive
1/r particle interaction [31, 32] is considered. The system is especially appealing since
it allows for a self-trapping of the condensate without external trap. The second long-
range particle interaction, which is of special importance in view of the experimental
realization [36], is the anisotropic dipole-dipole interaction. This occurs for atoms with
a large magnetic dipole, e.g. 52Cr [35]. This system allows for a tuning of the relative
strengths of the dipolar interaction and the contact interaction by tuning the scattering
length using a Feshbach resonance.

A special attention is turned to the regular or chaotic dynamics of the Bose-Einstein
condensates. The equations of motion resulting from the time-dependent variational
principle have a generalized Poissonian structure [37, 38] and the common tools known
from Hamiltonian mechanics, e.g. investigation of the generalized phase space by a
Poincaré surface of section, can be employed.

The thesis is organized as follows. In chapter 2 the time-dependent variational prin-
ciple is introduced. Two different formulations are discussed and the variational conser-
vation of expectation values is investigated. An upper error bound for the variational
approximation is presented. Chapter 3 treats the application of the TDVP to Gaussian
wave packet trial functions, and the numerical problems associated with the method
are discussed. In Chapter 4 a solution to the numerical problems arising from the
variational propagation of the GWPs is introduced. A general formulation for arbi-
trary parametrized trial functions is followed by the specialization to GWP trial func-
tions. The solution is based on introducing constraints into the variation. Suitable
constraints are formulated and a numerical example is presented. In chapter 5 the GWP
method is applied to the three-dimensional hydrogen atom. The regularization based on
Kustaanheimo-Stiefel coordinates is presented. The effect of the restriction on the four-
dimensional GWP is discussed. The exact analytic evolution of the restricted GWP
is presented, and the expansion in the restricted Gaussian basis states and the exact
propagation of a localized initial wave function in the fictitious time are shown. Symme-
try subspaces with conserved magnetic quantum number m and with conserved angular
momentum quantum numbers l,m are treated separately. In chapter 6.1 the H atom
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1. Introduction

in in a homogeneous magnetic field and in perpendicular external electric and magnetic
fields is treated. The TDVP is applied to the wave packets developed in chapter 5 for
the field-free H atom. In chapter 7 the stability analysis of the stationary states of the
Bose-Einstein condensate with attractive 1/r interaction is presented. The dynamics of
the condensate is investigated variationally and numerically exact and the results are
compared. In chapter 8 regularity of the dynamics of a Bose-Einstein condensate with
dipolar interaction is investigated variationally.
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2. Time-dependent variational
principle

The propagation of GWPs investigated in this thesis is based on the application of the
time-dependent variational principle (TDVP). In contrast to the local harmonic approx-
imation introduced by Heller, the TDVP allows for a more accurate approximation. The
basic equations of the TDVP as well as some corollaries are discussed in this chapter.

The evolution of a quantum mechanical wave function of a quantum system with the
Hamiltonian H is determined by the Schrödinger equation (in atomic units)

iψ̇(t) = Hψ(t) (2.1)

where the wave function ψ(t) is an element of the Hilbert space. The numerical effort for
the numerical exact solution of the Schrödinger equation grows exponentially with the
dimension of the system. Therefore for high dimensional systems approximate solutions
of the Schrödinger equation are needed. The idea of the time-dependent variational
principle is to reduce the dimensionality of the problem by searching an approximate
solution of the Schödinger equation not in the whole Hilbert space but on a manifold
in Hilbert space. The trial function of the approximation manifold is denoted by χ(t).
The time evolution of the exact wave function ψ(t) is then approximated by the time
evolution of the trial wave function χ(t) with χ(0) = ψ(0). The trial function is assumed
to be parametrized by a set of time-dependent parameters z(t) = (z1(t), . . . , znp(t)),
i.e. χ(t) = χ(z(t)). Of course the TDVP is also applicable to non parametrized trial
functions, these are however not the subject of investigation in this work. The results of
this chapter can easily be rewritten for non parametrized wave functions. There is much
freedom in approximating the exact wave function ψ(t) by the trial function χ(z(t)) as
“good” as possible by adjusting the time evolution of the parameters z(t). Variationally
“optimal” evolution of the trial function is obtained by the time-dependent variational
principle (TDVP) [39–42]. Instead of computationally expensively solving a partial
differential equation the problem is reduced to an initial value problem with ordinary
first order differential equations for the set of parameters. Different formulations of
the TDVP exist, which, depending on the trial function, do or do not lead to different
equations of motion for the parameters. It turns out that the different formulations
of the TDVP lead to the same equations of motion provided the space of admissible
variations is a complex vector space. It is the object of this work to use Gaussian wave
packets as trial functions where the resulting equations of motion for the parameters are
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2. Time-dependent variational principle

known to be the same for the different formulations of the variational principle. Since
the different approaches can make various aspects more clear, two variational principles,
viz. the least action principle and the McLachlan variational principle are presented in
the following.

2.1. Least action principle

In the least action principle, in analogy to classical mechanics a quantum Lagrangian

L(t) = 〈χ|i∂t −H|χ〉 (2.2)

is defined. The variation of the functional S with respect to χ is supposed to vanish [41]

S =

∫ t2

t1

dt L(t), (2.3)

where the variation at the endpoints vanishes as in classical mechanics. In order to make
differences between the various TDVP clear we assume now that the parameters z(t) of
the trial function are real. Actually this means no restriction on the parametrization since
any complex variational parameter can be split into its real and imaginary part leading
to two real parameters. With these variational parameters z(t) = (z1(t), . . . , znp(t)) the
Lagrangian reads

L(z, ż) =

〈
χ(z)

∣∣∣i∂χ(z)

∂z
· ż−Hχ(z)

〉
, (2.4)

where the time derivative of χ has been performed assuming that the wave function
χ(z(t)) is time dependent exclusively through the time-dependence of the variational
parameters. With the parametrization, the variation of χ leads to variations of the
parameters z(t), whose variations are restricted to vanish at the endpoints δz(t1) =
δz(t2) = 0, as in classical mechanics. The equations of motion for the parameters are
then the Euler-Lagrange equations

d

dt

∂L(z, ż)

∂żk

− ∂L(z, ż)

∂zk

= 0, k = 1, . . . , np. (2.5)

The first term in (2.5) reads

d

dt

∂L(z, ż)

∂żk

=
d

dt

〈
χ(z)

∣∣∣i∂χ(z)

∂zk

〉
=

〈
∂χ(z)

∂zl

żl

∣∣∣i∂χ(z)

∂zk

〉
+

〈
χ(z)

∣∣∣i∂2χ(z)

∂zk∂zl

żl

〉
, k = 1, . . . , np, (2.6)
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2.1. Least action principle

where Einstein’s sum convention is used. The second term in (2.5) yields

∂L(z, ż)

∂zk

=

〈
∂χ(z)

∂zk

∣∣∣i∂χ(z)

∂zl

żl

〉
+

〈
χ(z)

∣∣∣i∂2χ(z)

∂zk∂zl

żl

〉
−
〈
∂χ(z)

∂zk

∣∣∣H∣∣∣χ(z)

〉
−
〈
χ(z)

∣∣∣H∣∣∣∂χ(z)

∂zk

〉
, k = 1, . . . , np. (2.7)

Taking the difference between (2.6) and (2.7) according to the Euler-Lagrange equation
(2.5), the second term in the second line of (2.6) and the second term in the first line of
(2.7) cancel out. The Euler-Lagrange equations now read

i

(〈
∂χ(z)

∂zl

∣∣∣∂χ(z)

∂zk

〉
−
〈
∂χ(z)

∂zk

∣∣∣∂χ(z)

∂zl

〉)
żl

+

〈
∂χ(z)

∂zk

∣∣∣H∣∣∣χ(z)

〉
+

〈
χ(z)

∣∣∣H∣∣∣∂χ(z)

∂zk

〉
= 0. (2.8)

Introducing the complex Hermitean matrix

K ≡ Kkl ≡
〈
∂χ(z)

∂zk

∣∣∣∂χ(z)

∂zl

〉
, (2.9)

equation (2.8) can be written in compact notation

2 ImKklżl = − ∂

∂zk

〈H〉 , k = 1, . . . , np or 2 ImKż = − ∂

∂z
〈H〉 . (2.10)

The Hermitean matrix K introduced in (2.9) is positive semi-definite since

c†
〈
∂χ

∂z

∣∣∣∂χ
∂z

〉
c =

〈
∂χ

∂z
· c
∣∣∣∂χ
∂z

· c
〉

=
∣∣∣∣∣∣∂χ
∂z

· c
∣∣∣∣∣∣2 ≥ 0, ∀ c ∈ Cnp , (2.11)

which leads to the fact that its imaginary part is a skew symmetric real valued np × np

matrix S = 2 ImK. Skew symmetric real matrices have pairwise complex conjugate
purely imaginary eigenvalues, i.e. for the skew symmetric np×np matrix S to be invertible
it is necessary that its dimension np is even.

The favor of the least action VP is the resemblance to the classical Hamilton’s prin-
ciple and as we will see the structural similarity of the resulting quantum and classical
equations of motion. Suppose that the wave function is parametrized by an even number
np of real parameters z. The equations of motion turn to the canonical ones if a suit-
able parametrization is found where the skew symmetric matrix S takes the canonical
symplectic form

S =

(
0 −1
1 0

)
. (2.12)
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2. Time-dependent variational principle

Such a convenient parametrization for GWPs is investigated in [37] and is used in chapter
7. Otherwise, the equations of motion (2.10) have some generalized Poissonian structure
[37, 38].

To investigate the relation of the resulting equations of motion obtained from the
least action variational principle to other variational principles it is convenient to rewrite
equation (2.8) in a slightly different form,(

−
〈
i
∂χ(z)

∂zl

∣∣∣∂χ(z)

∂zk

〉
−
〈
∂χ(z)

∂zk

∣∣∣i∂χ(z)

∂zl

〉)
żl

+

〈
∂χ(z)

∂zk

∣∣∣H∣∣∣χ(z)

〉
+

〈
χ(z)

∣∣∣H∣∣∣∂χ(z)

∂zk

〉
= −

〈
∂χ(z)

∂zk

∣∣∣iχ̇(z)−Hχ(z)

〉
−
〈
iχ̇(z)−Hχ(z)

∣∣∣∂χ(z)

∂zk

〉
= 0, k = 1, . . . , np.

(2.13)

Altogether the least action principle for trial functions with real parameters leads to the
compact equations

Re

〈
∂χ(z)

∂z

∣∣∣iχ̇(z)−Hχ(z)

〉
= 0. (2.14)

It is however not intuitively obvious in which sense this variational principle leads to
“optimal” approximations.

2.2. McLachlan variational principle

A more descriptive approach is the formulation of McLachlan [42], or equivalently the
minimum error method [9], where the norm of the deviation between the right and the
left hand side of the Schrödinger equation (2.1) with respect to the trial function is to
be minimized. The quantity

I = ||iφ(t)−Hχ(t)||2 !
= min (2.15)

is to be varied with respect to φ only, and then χ̇ ≡ φ is chosen, i.e. for any time t the fixed
wave function χ(t) is supposed to be given and its time derivative χ̇(t) is determined
by the requirement to minimize I. Again it is supposed that the wave function χ(t)
is parametrized by a set of parameters z(t) = (z1(t), . . . , znp(t)), χ(t) = χ(z(t)). For
brevity the arguments of the wave function are dropped in the following. Expressed in
terms of the parameters z(t) the quantity I reads

I =

〈
∂χ

∂z
· ż
∣∣∣∂χ
∂z

· ż
〉
− i

〈
Hχ
∣∣∣∂χ
∂z

· ż
〉

+ i

〈
∂χ

∂z
· ż
∣∣∣Hχ〉+

〈
Hχ
∣∣∣Hχ〉 (2.16)
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2.2. McLachlan variational principle

which is a quadratic function of ż for fixed values of z. The variation δφ carries over to
variations δż

δ |χ̇(z, ż)〉 =

∣∣∣∣∂χ̇∂z · δz
〉

+

∣∣∣∣∂χ̇∂ż · δż
〉

=

∣∣∣∣ ∂∂ż
(
∂χ

∂z
· ż
)
· δż
〉

=

∣∣∣∣∂χ∂z · δż
〉
. (2.17)

For fixed χ(z) variations δz of the parameters themselves are not allowed, since then
the wave function χ(z) would not be fixed. Thus the term

∣∣∂χ̇
∂z
· δz
〉

in equation (2.17)
vanishes. Consider now variations of I in equation (2.15),

δI = 〈δχ̇|χ̇〉+ 〈χ̇|δχ̇〉 − 〈iδχ̇|Hχ〉 − 〈Hχ|iδχ̇〉
= 〈δχ̇|χ̇+ iHχ〉+ 〈χ̇+ iHχ|δχ̇〉

=

〈
∂χ

∂z
· δż
∣∣∣χ̇+ iHχ

〉
+

〈
χ̇+ iHχ

∣∣∣∂χ
∂z

· δż
〉

= 0 (2.18)

It must now be distinguished between real and complex parameters z. For real param-
eters it is δż∗k = δżk, k = 1, . . . , np. The variations δż in the bra-vector and in the
ket-vector in (2.18) are then not independent and the equations turn to

Re

〈
∂χ

∂z

∣∣∣χ̇+ iHχ

〉
· δż = 0. (2.19)

The variations δż are arbitrary and therefore it leads to

Re

〈
∂χ

∂z

∣∣∣χ̇+ iHχ

〉
= 0

⇔ Re

〈
i
∂χ

∂z

∣∣∣iχ̇−Hχ

〉
= 0

⇔ Im

〈
∂χ

∂z

∣∣∣iχ̇−Hχ

〉
= 0. (2.20)

In case of complex parameters z it must be considered that the variations δż∗k and
δżk, k = 1, . . . , np are independent and each bracket in (2.18) must vanish itself

δż† ·
〈
∂χ

∂z

∣∣∣χ̇+ iHχ

〉
= 0 (2.21)

and therefore 〈
∂χ

∂z

∣∣∣iχ̇−Hχ

〉
= 0. (2.22)

From considering the variations δż instead of δż† the adjoint equations of (2.22) are
obtained from equations (2.18). Altogether, for real parameters, the McLachlan varia-
tional principle requires the imaginary parts of the brackets in (2.22) to vanish, while
the least action variational principle demands their real parts to be zero. For complex
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2. Time-dependent variational principle

parameters both variational principles lead to the same equations (2.22) known as the
Dirac-Frenkel variational principle. To show this the wave function is supposed to be
an analytic function of the parameters with respect to complex differentiation. Then χ
fulfills the Cauchy-Riemann differential equations

∂χr

∂zr

=
∂χi

∂zi

, (2.23)

∂χr

∂zi

= −∂χi

∂zr

, (2.24)

where the splitting χ = χr + iχi and z = zr + izi of complex quantities into their real
and imaginary parts has been used. Multiplying (2.24) with the imaginary unit and
subtracting it from (2.23) yields

∂(χr + iχi)

∂zr

=
∂(χi − iχr)

∂zi

= −i∂(χr + iχi)

∂zi

, (2.25)

or by putting together again the real and the imaginary part of the wave function

∂χ

∂zr

= −i ∂χ
∂zi

. (2.26)

Now it is clear that if the trial function is a complex differentiable function of the complex
parameters z, then both, the least action as well as the McLachlan VP lead to the same
results since inserting (2.26) in (2.14) gives

Re

〈
∂χ

∂zr

∣∣∣iχ̇−Hχ

〉
= Re

〈
−i ∂χ
∂zi

∣∣∣iχ̇−Hχ

〉
= Im

〈
∂χ

∂zi

∣∣∣iχ̇−Hχ

〉
= 0, (2.27)

and also

Re

〈
∂χ

∂zi

∣∣∣iχ̇−Hχ

〉
= Re

〈
i
∂χ

∂zr

∣∣∣iχ̇−Hχ

〉
= −Im

〈
∂χ

∂zr

∣∣∣iχ̇−Hχ

〉
= 0. (2.28)

If the real part of (2.22) is zero then also the imaginary part is zero and vice versa,
if the trial function is analytic or more generally if it satisfies (2.26), which is called
“complementary principle” by some authors [37]. An illustration of equation (2.22) is
presented in fig. 2.1. Here the manifold of approximation M , consisting of all possible
configurations χ(z), is plotted schematically as a 2D-surface in the Hilbert space. The
tangent space of the manifold in the point χ is a linear vector space and is spanned by
the derivatives ∂χ

∂zk
, k = 1, . . . , np. The tangent space is denoted by TχM in fig. 2.1.

According to the Schrödinger equation the exact time derivative χ̇ is given by −iHχ,
denoted by the arrow with the black head. In general the exact time derivative does
not lie in the tangent space, otherwise the trial function would be an exact solution of
the Schrödinger equation. The variational approximation to the exact time derivative is
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2.2. McLachlan variational principle

+

.
χ

χ

Tχ M

M

H−i

Figure 2.1.: Sketch of the manifold M of approximation of the trial wave function χ(z).
The variational evolution of the trial function, denoted by the arrow with
the white head is obtained as the projection of the exact time evolution
−iHχ, denoted by the arrow with the black head onto the tangent space
TχM of the manifold M in the point χ.

given by that vector of the tangent space which has minimal deviation from the exact
one. This is the orthogonal projection of the exact time derivative onto the tangent
space, denoted by the arrow with the white head in fig. 2.1.

For parametrized wave functions the variational principle (2.15) simply reduces to
a quadratic minimization problem where the gradient of I with respect to the time
derivatives of the parameters must be zero

∂I

∂żk

= 0, k = 1, . . . , np. (2.29)

For complex parameters zk = zkr + izki one has the freedom to take either ∂I/∂żkr = 0
together with ∂I/∂żki = 0 or to treat ż∗k and żk formally as independent parameters and
to take either ∂I/∂żk = 0 or ∂I/∂ż∗k = 0. The resulting equations of motion are (2.20)
in the first case and (2.22) in the second case. Analogous to (2.10) for the least action
VP explicit equations of motion for the McLachlan VP are directly obtained from (2.20),
i.e.

ReKż = Imh, (2.30)

with

h =

〈
∂χ

∂z

∣∣∣H∣∣∣χ〉 . (2.31)
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2. Time-dependent variational principle
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Figure 2.2.: Schematic illustration of the parabolic function I(ż†, ż) of the derivatives
of the parameters. The parameters themselves are fixed in the plot. They
determine the shape and position of the parabola. The position of the
minimum determines the further evolution of the parameters and is located
where the gradient is zero and is determined by solving a matrix equation.

For complex parameters the TDVPs lead to the same equations and read

Kż = −ih. (2.32)

As already shown, the Hermitean matrix K is positive definite ensuring that the ex-
tremum of the quadratic quantity I in the ż space for fixed z is a minimum. This is
sketched in fig. 2.2 for two parameters żk and żj. The minimum is located where the
gradient of I vanishes with respect to the time derivatives of the parameters. The shape
and the position of the parabola depend on the fixed parameters z as well as the minimal
value Imin ≥ 0, which is a measure of the accuracy of the variational approximation.

In this work mainly GWPs are used as trial functions, which may be parametrized
by a set of complex parameters. For the time evolution of the GWP it is therefore
unimportant which TDVP is applied. However we use the McLachlan TDVP when
inequality constraints are accounted for within the variational process in chapter 4 due
to the descriptive approach via the quadratic minimization problem.

For parametrized wave functions the TDVP leads to a reduction of the Schrödinger
equation to a system of ordinary first order differential equations of motion for the
parameters z(t). The matrix equation (2.32) must be solved numerically after every
time step of integration for the time derivatives ż if a numerical algorithm for ordinary
differential equations, e.g. Runge-Kutta or Adams, is used.
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2.3. Conservation laws

2.3. Conservation laws

An interesting question is whether the expectation value of a conserved observable A, i.e.
an observable that commutes with the Hamiltonian [A,H] = 0, is also conserved within
the variational approximation [37, 38]. Assume the simple sufficient condition that Aχ
lies in the space spanned by the vectors |∂χ/∂z〉, i.e. in the space of feasible variations
of the trial function χ(x, z(t)). In terms of fig. 2.1 this is the tangent space TχM of the
manifold of approximation in the point χ. We then have [38]

d

dt
〈χ|A|χ〉 = 2Re 〈Aχ|χ̇〉 = 2Re 〈Aχ|(−iH)|χ〉 = 〈χ| − i[H,A]|χ〉 = 0 (2.33)

where equation (2.20) is used and the above assumption that Aχ can be written as a
linear combination of the vectors |∂χ/∂z〉, i.e., Aχ ∈ TχM . Since (2.20) is used, it gives
a criterion for expectation value conservation within the McLachlan VP, and of course
also for the Dirac-Frenkel formulation of the VP (2.22), but not for the least action VP,
unless the parameters satisfy equation (2.26).

2.3.1. Conservation of norm and energy

The two especially important cases of norm and energy conservation are investigated
explicitly. It has been just shown (2.33) that 〈χ|A|χ〉 is conserved within the McLachlan
VP if Aχ ∈ TχM and [H,A] = 0. For the investigation of the norm conservation consider
now the special case A = 1. The identity operator commutes with the Hamiltonian, and
therefore according to (2.33) the norm of the trial wave function is conserved within
the McLachlan TDVP if χ ∈ TχM , but not within the least action TDVP unless the
parameters satisfy equation (2.26). For parametrized wave functions the condition χ ∈
TχM is equivalent to the requirement that there is one parameter z0 such that ∂χ

∂z0
is a

multiple of χ.
In general, the trial function will not provide an exact solution to the Schrödinger

equation, i.e. Hχ /∈ TχM . Otherwise the variational solution would be exact. Therefore
the mean-field energy is not conserved within the McLachlan VP according to section
2.3 as long as the parameters do not satisfy equation (2.26). The mean-field energy is
however conserved within the least action VP since

d

dt
〈χ|H|χ〉 = 2Re 〈χ̇|H|χ〉

= 2Re (〈χ̇|H|χ〉 − 〈χ̇|iχ̇〉)
= 2Re 〈χ̇|H − iχ̇〉 = 0. (2.34)

It has been used that Re i 〈χ̇|χ〉 = 0, equation (2.14) and that χ̇ ∈ TχM is always
fulfilled. The mean-field energy is in general not conserved for the McLachlan TDVP,
unless the parameters obey (2.26). The GWP trial functions used in this work have a
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2. Time-dependent variational principle

normalization parameter, say z0, such that ∂χ
∂z0

is a multiple of χ. Additionally they may
be parametrized by complex parameters leading to (2.26), i.e. the equations of motion
resulting from the least action and the McLachlan TDVP are equivalent. Therefore the
norm as well as the expectation value of the Hamiltonian are conserved for variational
GWP propagation.

2.4. Error estimation

The error made by the variational approximation is defined as the norm of the difference
between the exact solution of the Schrödinger equation ψ(t) and its variational approx-
imation χ(t), i.e. ||ψ(t) − χ(t)||. To obtain an estimation of the error [43, 44] consider

|χ̇− ψ̇〉 = |χ̇〉 − 1

i
H |χ〉+

1

i
H |χ〉 − 1

i
H |ψ〉 . (2.35)

An error bound follows from multiplying the above equation (2.35) with 〈χ(t)−ψ(t)| and
taking the real part, i.e.

Re
〈
χ− ψ

∣∣χ̇− ψ̇
〉

= Re

〈
χ− ψ

∣∣χ̇− 1

i
Hχ

〉
+ Re

〈
χ− ψ

∣∣1
i
H
∣∣χ− ψ

〉
≤ ||χ− ψ|| · ||i∂tχ−Hχ||, (2.36)

where the Hermiticity of the Hamiltonian has been used, which makes the second term
in (2.36) zero, since the bracket is imaginary. On the other hand it is

||χ− ψ|| d
dt
||χ− ψ|| = 1

2

d

dt
||χ− ψ||2 = Re〈χ− ψ|χ̇− ψ̇〉, (2.37)

such that the local error bound is

d

dt
||χ− ψ|| ≤ ||i∂tχ−Hχ||, (2.38)

or in the integral version

||χ(t)− ψ(t)|| ≤
∫ t

0

||i∂t′χ(t′)−Hχ(t′)||dt′, (2.39)

when χ(0) = ψ(0) is assumed.
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3. Application of the TDVP to GWPs

The TDVP described in chapter 2 is applied to Gaussian wave packets as trial functions.
The accuracy of approximation is considerably increased if the wave function is not
approximated by a single GWP but is expanded as a superposition of GWPs. First
the propagation of a single GWP based on a local harmonic expansion of the potential
introduced by Heller [10] is sketched. Then the equations of motion for the Gaussian
parameters of a superposition of GWPs are derived from the TDVP.

A single GWP in D dimensional coordinate space (x ∈ RD and ~ = 1) can be written
as

g(y,x) = ei((x−q)A(x−q)+p·(x−q)+γ), (3.1)

where A is a complex symmetricD×D matrix, the momentum p and center q are real, D-
dimensional vectors (the expectation values of the momentum and the position operator,
respectively, i.e. p =

〈
g|1

i
∂
∂x
|g
〉

and q = 〈g|x|g〉), and the phase and normalization is
given by the complex scalar γ. The Gaussian parameters, summarized by y = (A,p,q, γ)
are time-dependent, their time argument is omitted for brevity. The time evolution of
the GWP is given by the time evolution of the parameters y. By construction, the
GWP stays Gaussian during the propagation. Therefore the GWP does not evolve in
the original potential of the system but rather in an effective time-dependent harmonic
potential

Vh(x) = v0 + v1 · x +
1

2
xV2x, (3.2)

which can be computed by different methods. In the simple local harmonic approxima-
tion [10] the potential V (x) of the Schrödinger equation is expanded in a Taylor series
of second order around the center of the GWP, i.e.

Vh(q) = V (q),
∂Vh(x)

∂x
|q =

∂V (x)

∂x
|q,

∂2Vh(x)

∂x ∂x
|q =

∂2V (x)

∂x ∂x
|q. (3.3)

A typical situation of a GWP in a Morse potential, together with the associated local
harmonic potential is plotted in fig. 3.1. The potentials V (x) (red line) and Vh(x)
(green line) as well as their first two derivatives coincide at the center of the GWP
(blue line). The effective potential travels together with the GWP, and is in general
time-dependent except for (time-independent) harmonic underlying potentials, where
the expansion becomes exact.

The equations of motion for the Gaussian parameters are then obtained by inserting
the GWP trial function into the Schrödinger equation with the potential V (x) replaced

19



3. Application of the TDVP to GWPs
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Figure 3.1.: Probability density of a GWP (blue line) running in a Morse potential (red
line). The local harmonic potential (green line), as suggested by Heller
coincides with the underlying potential at the center of the GWP in the
zeroth, first and second derivative. The traveling GWP is accompanied by
the effective potential Vh(x) along its trajectory.

by Vh(x), i.e. iġ(y,x) = (T + Vh(x))g(y,x) where the splitting of the Hamiltonian H =
T + V is assumed. The equations of motion follow from comparison of the coefficients.
This simple method works as long as the GWP is sufficiently narrow. In practice this is
valid only for short times.

A more accurate method is to determine the evolution of the GWP by the TDVP,
which fits the effective time-dependent harmonic potential coefficients v0,v1, V2 varia-
tionally to the underlying potential. For numerical reasons it is advantageous not to
build up a matrix equation of the form (2.32) for the time derivatives of the parame-
ters directly, but to determine the coefficients v0,v1, V2 of the effective potential first
and then to set up the differential equations for the parameters in a second step. The
reason for this procedure is revealed at the end of this chapter. The starting point for
the derivation of the equations of motion are eqs. (2.22) and (2.20) for the complex
parameters A, γ and for the real parameters p,q, respectively.

Now we turn to a trial function consisting of a superposition of N GWPs. A super-
script k with k = 1, . . . , N to distinguish between the different GWPs is introduced. The
Gaussian parameters of the k-th GWP are denoted by yk = (Ak,pk,qk, γk). Their time
argument is omitted for brevity. The trial function χ is a superposition of N GWPs

χ(z,x) =
N∑

k=1

g(yk,x), z = (y1, . . . ,yN). (3.4)
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In order to evaluate eqs. (2.22) and (2.20) for a GWP the action of the kinetic operator
on a GWP as well as the time derivative of a GWP are investigated. Using a splitting
of the Hamiltonian H = T +V in atomic units and assuming Cartesian coordinates, the
Laplace operator applied to a GWP yields

T g(yk,x) = −1

2
∆ g(yk,x)

=

[
−i trAk + (x− qk)2(Ak)2(x− qk) + 2pkAk(x− qk) +

(pk)2

2

]
g(yk,x), (3.5)

and the time derivative of the GWP reads

∂g(yk,x)

∂t
=

∂g(yk,x)

∂Ak
Ȧk +

∂g(yk,x)

∂pk
· ṗk +

∂g(yk,x)

∂qk
· q̇k +

∂g(yk,x)

∂γk
γ̇k

= i
[
(x− qk)Ȧk(x− qk) + (x− qk) · ṗk

+ (−2Ak(x− qk)− pk) · q̇k + γ̇
]
g(yk,x). (3.6)

Both expressions have the same form with respect to the coordinates x, consisting of a
quadratic polynomial in x times the GWP itself, and thus it can be summarized as

iχ̇− Tχ =
N∑

k=1

(
[−γ̇k + itrAk + pk · (q̇k − 1

2
pk)]

+[−ṗk + 2Ak(q̇k − pk)] · (x− qk)

+(x− qk)[−Ȧk − 2(Ak)2](x− qk)
)
g(yk,x)

=
N∑

k=1

(
x(−Ȧk − 2(Ak)2)x

+(−ṗk + 2Ak(q̇k − pk)− 2(−Ȧk − 2(Ak)2)qk)x

+qk(−Ȧk − 2(Ak)2)qk − (−ṗk + 2Ak(q̇k − pk))qk

+(−γ̇k + pk · q̇k + itrAk − (pk)2

2
)

)
g(yk,x)

≡
N∑

k=1

(
vk

0 + vk
1 · x +

1

2
xV k

2 x

)
g(yk,x). (3.7)

Eq. (3.7) defines, after sorting by powers of x, the complex symmetric D ×D matrices
V k

2
1

2
V k

2 = −Ȧk − 2(Ak)2, (3.8)

the complex vectors vk
1 ∈ CD

v1 = −ṗk + 2Ak(q̇k − pk)− 2(−Ȧk − 2(Ak)2)qk

= −ṗk + 2Ak(q̇k − pk)− V k
2 qk (3.9)
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3. Application of the TDVP to GWPs

and the complex scalars vk
0

vk
0 = qk(−Ȧk − 2(Ak)2)qk − (−ṗk + 2Ak(q̇k − pk))qk − γ̇k + pk · q̇k + i trAk − (pk)2

2

= qkV k
2 qk − (−ṗk + 2Ak(q̇k − pk))qk − γ̇k + pk · q̇k + i trAk − (pk)2

2
(3.10)

as the coefficients of a second order polynomial in x, i.e. the coefficients of the effective
harmonic potential. The equations of motion are obtained by solving eqs. (3.8)-(3.10)
for the time derivatives, however the coefficients must first be determined. To set up the
equations for determining the coefficients (2.20) and (2.22), the derivatives of the GWPs
with respect to the real Gaussian parameters pk,qk and the complex parameters Ak, γk

are needed. Switching the superscript from k to l, for each set yl, l = 1, . . . , N these
derivatives are

∂g(yl,x)

∂γl
= ig(yl,x),

∂g(yl,x)

∂pl
= i(x− ql)g(yl,x),

∂g(yl,x)

∂ql
= −i(2A(x− ql) + pl)g(yl,x),

∂g(yl,x)

∂Al
αβ

= i(xα − ql
α)(xβ − ql

β)g(yl,x), α, β = 1, . . . , D. (3.11)

Using (3.11) equation (2.20) concerning the derivatives with respect to the real param-
eters pl and ql read

Im
〈
i(xα − ql

α)g(yl,x)
∣∣∣(i∂t −H)χ

〉
= 0, (3.12)

Im
〈
i(2Al

αβ(xβ − ql
β) + pl

α)g(yl,x)
∣∣∣(i∂t −H)χ

〉
= 0, (3.13)

with l = 1, . . . , N and α, β = 1, . . . , D. For the complex parameters Al and γl the
variational equations (2.22) are〈

i(xα − ql
α)(xβ − ql

β)g(yl,x)
∣∣∣(i∂t −H)χ

〉
= 0, (3.14)〈

ig(yl,x)
∣∣∣(i∂t −H)χ

〉
= 0. (3.15)

The resulting set of linear equations is not very favorable since then it must be distin-
guished between the real and complex parameters. This is especially disadvantageous
if a usual numerical algorithm for solving matrix equations like factorizing the matrix
by LU -decomposition or Cholesky factorization for positive Hermitean matrices is used
which does not distinguish between real and complex equations. However a superposition
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of eqs. (3.12)-(3.15) is possible where a distinction between real and complex parameters
is not necessary and additionally the integrals become even simpler. Since (3.15) holds,
equations (3.12) and (3.13) may be replaced by

Im
〈
ixαg(y

l,x)
∣∣∣(i∂t −H)χ

〉
= 0, (3.16)

Im
〈
i2Al

αβxβg(y
l,x)

∣∣∣(i∂t −H)χ
〉

= 0. (3.17)

The complex matrices Al are split into their real and imaginary parts Al = Al
r + iAl

i.
Inserting these splittings into (3.17) yields

Im
〈
i2(Al

r)αβxβg(y
l,x)− 2(Al

i)αβxβg(y
l,x)

∣∣∣(i∂t −H)χ
〉

(3.16)
= Im

〈
−2(Al

i)αβxβg(y
l,x)

∣∣∣(i∂t −H)χ
〉

= Re
〈
2i(Al

i)αβxβg(y
l,x)

∣∣∣(i∂t −H)χ
〉

= 2(Al
i)αβRe

〈
ixβg(y

l,x)
∣∣∣(i∂t −H)χ

〉
= 0. (3.18)

In order for the GWP to be normalizable, the imaginary part of the width matrices Al
i

must not be singular but positive definite. Therefore the only solution of the set of linear
equations (3.18) is the trivial solution

Re
〈
ixβg(y

l,x)
∣∣∣(i∂t −H)χ

〉
= 0. (3.19)

From (3.16) and (3.19) follows that both the real and the imaginary part of the complex
bracket must vanish, i.e.〈

xβg(y
l,x)

∣∣∣(i∂t −H)χ
〉

= 0, β = 1, . . . , D, l = 1, . . . , N. (3.20)

The bra-vector of equation (3.14) is expanded as〈
i(xα − ql

α)(xβ − ql
β)g(yl,x)

∣∣∣(i∂t −H)χ
〉

=
〈
i(xαxβ − ql

αxβ − ql
βxα + ql

αq
l
β)g(yl,x)

∣∣∣(i∂t −H)χ
〉

(3.15)
=

〈
i(xαxβ − ql

αxβ − ql
βxα)g(yl,x)

∣∣∣(i∂t −H)χ
〉

(3.20)
=

〈
ixαxβg(y

l,x)
∣∣∣(i∂t −H)χ

〉
= 0. (3.21)

Altogether the equations (3.12)-(3.15) may be replaced by the equivalent equations〈
g(yl,x)

∣∣∣(i∂t −H)χ
〉

= 0, (3.22)〈
xαg(y

l,x)
∣∣∣(i∂t −H)χ

〉
= 0, (3.23)〈

xαxβg(y
l,x)

∣∣∣(i∂t −H)χ
〉

= 0, α, β = 1, . . . , D, l = 1, . . . , N, (3.24)
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3. Application of the TDVP to GWPs

where it need not be distinguished between real and complex equations, and additionally
the integrals that must be computed to set up the set of linear equations are simpler.

Note that this set of linear equations is directly obtained if instead of the parametriza-
tion of the GWP in equation (3.1) the equivalent parametrization of the GWP

g(ỹ,x) = ei(xAx+b·x+c), ỹ = (A,b, c) (3.25)

with the same complex symmetric D×D matrix A as in (3.1), a complex vector b ∈ CD

and the complex phase c would have been chosen. The two parametrizations (3.1) and
(3.25) are equivalent and the derivatives of the GWP with respect to the parameters
A,b, c gives directly the bra-vectors of the equations (3.22)-(3.24), except for a common
prefactor i which cancels out. This parametrization is however not used because the
integration of the trajectories A(t),b(t), c(t) is numerically difficult.

Inserting (3.7) in the ket-vectors of equations (3.22)-(3.24), the compact form〈
xm

α x
n
βg(y

l,x)
∣∣∣ N∑

k=1

(
vk

0 + vk
1 · x +

1

2
xV k

2 x− V (x)

)
g(yk,x)

〉
= 0 (3.26)

is obtained with

l = 1, . . . , N ; m+ n = 0, 1, 2; α, β = 1, . . . , D. (3.27)

Sorting terms in (3.26) and abbreviating g(yk,x) ≡ gk yields

N∑
k=1

vk
0〈gl|xm

α x
n
β|gk〉+

N∑
k=1

〈gl|xm
α x

n
βx · vk

1 |gk〉

+
1

2

N∑
k=1

〈gl|xm
α x

n
βxV

k
2 x|gk〉 =

N∑
k=1

〈gl|xm
α x

n
βV (x)|gk〉; (3.28)

l = 1, . . . , N ; m+ n = 0, 1, 2; α, β = 1, . . . , D.

Equation (3.28) can be written in the compact form of a matrix equation

Kv = r (3.29)

when all coefficients (vk
0 ,v

k
1 , V

k
2 ), k = 1, . . . , N are put together into the complex vector

v. The dimension of the complex matrix equation is N(D(D + 1)/2 + D + 1) for N
GWPs, because there are ND(D+1)/2 equations due to the complex symmetric D×D
matrices Ak, ND complex equations result from the 2ND real parameters pk

α and qk
α

and N equations due to the N complex parameters γk. For a convenient arrangement
of the elements in K, the matrix K is Hermitean positive definite. All inner products in
the Hilbert space denoted by 〈.|.〉 are calculated in position space representation in this
work. The integrals that build up the components of the matrix K on the left hand side
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of equation (3.28) can be solved analytically, as well as the integrals on the right hand
side, provided the potential is of special form, e.g. polynomial, Gaussian or exponential.

The matrix equation (3.28) is derived for fully occupied width matrices Al which have
no restrictions except for the requirement Al = (Al)T . Further symmetries or restrictions
of the matrices Al can enter eq. (3.11) such that the dimension of the resulting matrix
equation (3.28) is reduced. Such symmetries or restrictions are e.g. choosing the matrices
Al to be diagonal, which would lead to the restriction β = α in eq. (3.28). The width
matrices can also be kept fixed, called “frozen Gaussians” [11]. Other restrictions on
the width matrices will be encountered in chapter 5. Similarly, the GWPs can also be
restricted to be located at the origin by the restrictions pl = 0 and ql = 0, which leads
to v1 = 0 and m+ n = 0, 2 in eq. (3.28).

It is straightforward to calculate the time derivatives of the Gaussian parameters
once the linear equations (3.28) are solved. The differential equations for the Gaussian
parameters are expressed by (vk

0 ,v
k
1 , V

k
2 ), k = 1, . . . , N according to their definition in

equations (3.8), (3.9), (3.10) and read

Ȧk = −2(Ak)2 − 1

2
V k

2 , (3.30a)

q̇k = pk + sk, (3.30b)

ṗk = 2ReAksk − Revk
1 − ReV k

2 qk, (3.30c)

γ̇k = −vk
0 + itrAk +

1

2
(pk)2 − vk

1 · qk − 1

2
qkV k

2 qk + pk · sk, (3.30d)

where sk = 1
2
(ImAk)−1(Imvk

1 + ImV k
2 qk). Numerically it is more appropriate to intro-

duce two additional D ×D complex matrices Bk, Ck according to

Ak =
1

2
Bk(Ck)−1, (3.31)

and to integrate the equations of motion

Ċk = Bk,

Ḃk = −V k
2 C

k (3.32)

instead of integrating Ak(t) directly, because the oscillating (Ak(t))2 term causes nu-
merical difficulties [45]. There is some freedom for the initial choice of B and C. Most
simple is to set Ck(0) = 1, Bk(0) = 2Ak(0). For numerical accuracy, it is appropriate to
symmetrize the matrix Ak(t) after each time step. Note that the symmetry Ak = (Ak)T

of the matrices Ak is not maintained in these two auxiliary matrices Bk, Ck, such that
the number of parameters related to the width matrix grows from D× (D+1)/2 to 2D2.
The increase of the number of parameters only affects the number of coupled differential
equations, but not the dimension of the matrix equation (3.28). In case of further sym-
metries of the width matrix, e.g. if it is diagonal, the dramatic increase of the number
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3. Application of the TDVP to GWPs

of parameters can however be reduced. For the special form of the matrices Ak for the
GWPs in the regularized hydrogen atom, this topic is discussed in detail in chapter 6.

In the general case, the motion of the GWPs within the superposition is coupled,
i.e. the GWPs affect each others motion. If however the underlying potential V (x) is
harmonic they decouple. This can be best visualized by eq. (3.26). For a harmonic
potential the expression in the round bracket vanishes and the coefficients vk

0 ,v
k
1 , V

k
2 are

equal for all k = 1, . . . , N , such that the effective potential exactly matches the original
potential.

Given some initial wave function, i.e. the initial parameters z(t = 0), the wave function
is propagated by integrating the trajectories of the parameters. At every time step
equation (3.28) must be solved for the coefficients v which are inserted in (3.30a)-(3.30d)
to obtain ż. In the course of integration, depending on how many GWP are propagated
in common, it will sooner or later happen that the matrix K associated with the set of
linear equations (3.28) becomes ill-conditioned, or even numerically singular. As a result
the time step of the integration routine becomes extremely small, rendering the method
of GWP propagation impracticably slow [13]. In the worst case, further integration or
matrix inversion respectively, can even fail. A detailed discussion and a solution to this
outstanding problem is one of the goals of this thesis and is presented in chapter 4.
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4. Inequality constrained TDVP

The equations of motion resulting from the TDVP especially for a large number of
coupled GWPs become badly behaved from time to time during the integration, making
it hardly possible if ever to integrate them. These numerical problems are based on the
singularity of the matrix K in eq. (3.29). A solution to circumvent the problem is now
presented.

Matrix singularity problems arise from overcrowding the basis set, i.e. from situations
where fewer GWP would be sufficient to represent the wave function. On the other
hand for an accurate approximation of the wave function it is desirable to have a large
number of adjustable parameters. However, there is a discrepancy between the number
of GWPs necessary to give accurate results and the maximum number of GWPs that can
be propagated using the TDVP without numerical difficulties [6]. There exist different
proposals to overcome this numerical problem, such as a singular value decomposition
of the matrix K [14] or reducing the number of GWPs when overcrowding takes place
[7, 9, 16]. Also reducing the variational freedom by freezing the widths [6, 7, 9, 11]
and choosing classical trajectories for the centers of the GWPs [8, 15, 17] has been
discussed. However, the different methods have some drawbacks. The singular value
decomposition indeed prevents the method to break down due to the singularity of
the matrix, but does not heal the problem with the tiny step sizes caused by badly
behaved differential equations [12]. The idea to reduce the number of GWPs during
propagation when necessary requires a fit of the new, reduced basis set to the original
wave function. Problems occur to find a reduced basis that reproduces the original
wave function accurately and simultaneously is well behaved. Despite the large variety
of different proposals an adequate solution for the matrix singularity problem is still
lacking.

In this chapter, the approach of regularizing the equations of motion for the parameters
is based on minimizing the quantity I in (2.16) while certain inequality constraints are
applied. The constraints must be chosen in such a way that they prevent the matrix K
in (3.28) to become ill-conditioned. This means all Gaussian parameters evolve freely
according to the TDVP, and the constraints only become active from time to time
whenever the unconstrained evolution would drive the parameters in domains where the
matrix would be singular, and are switched off as soon as these “forbidden” domains are
left again. Formally spoken we reduce the space of admissible configurations to regions
where the associated matrix K is regular.

To demonstrate the generality of our method we first apply constraints to the general
case of an arbitrary trial function χ(z(t)) whose parameters z(t) evolve according to
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4. Inequality constrained TDVP

equation (2.32). We derive their modified equations of motion which are obtained if the
parameters z(t) are subject to some arbitrary inequality constraints. Then we return to
GWP trial functions (3.4) and derive the modification of equation (3.28) obtained when
the GWPs are subject to inequality constraints. Adequate constraints which prevent the
matrix from singularity are presented for a model Hamiltonian, viz. the two-dimensional
diamagnetic Kepler problem. The method will also be applied in chapter 6 for the wave
packet propagation in the 3D hydrogen atom in external fields.

Due to real inequality constraints it is convenient to use a real formulation of the
equations. Complex quantities are split into their real and imaginary parts, which are
denoted by the subscripts r and i, respectively.

4.1. Inequality constrained TDVP on arbitrary trial
functions

Consider an arbitrary trial function χ(z(t)) and assume a real inequality constraint on
the parameters z(t) ∈ Cnp which can be written in the form

f(z, z∗) ≡ f(zr, zi) ≡ f(z̄) ≥ fmin (4.1)

where the function f is explicitly known. For brevity, the notation z̄ ≡ (zr, zi) ∈ R2np

will be used.
As long as f(zr, zi) > fmin, all parameters evolve according to equation (2.32) without

being affected by the restriction. When f(zr, zi) = fmin is reached at some point in time
t, the constraint becomes active, and we have to demand ḟ(t) ≥ 0, otherwise f(t+ ∆t)
with some small positive ∆t would violate the constraint (4.1). Therefore the quantity
I of equation (2.16) at fixed z must be minimized with respect to ż, where (żr, żi) are
now subject to the constraint

ḟ =
∂f

∂zr

· żr +
∂f

∂zi

· żi ≡
∂f

∂z̄
· ˙̄z ≥ 0. (4.2)

In other words the possibly nonlinear constraint (4.1) on z has been reduced to the
linear constraint (4.2) on ż when f = fmin. Then the allowed domain of (żr, żi) for
searching the minimum of I is no more the whole space R2np , but the half-space ḟ ≥ 0
linearly restricted by equation (4.2). In general, minimization of a function on a given
domain requires two steps, firstly to find the local internal minima and secondly, to
find the local minima on the boundaries. The global minimum in the given domain is
obtained by comparison. Here it is sufficient to search for the minimum of I solely on
the boundary of the domain defined by equation (4.2) where the equality sign is fulfilled.
That means the inequality (4.2) may be replaced by the computationally much more
feasible constraint

∂f

∂zr

· żr +
∂f

∂zi

· żi ≡
∂f

∂z̄
· ˙̄z = 0. (4.3)
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Figure 4.1.: The ellipses schematically represent isolines of I in equation (2.16) for fixed
parameters z. The domain of allowed ż for the minimum of I is the full
space, when f > fmin and is reduced to the half space ḟ ≥ 0, when f = fmin

is reached.

The reason is that I is a positive definite parabolic function of ż whose absolute minimum
lies outside the allowed domain by assumption. Since there are no internal minima,
I obviously takes its allowed minimum on the boundary of the allowed domain. The
constraint is switched off again as soon as the trajectory ż(t) of the absolute minimum of
I crosses the plane given by equation (4.3) in the (żr, żi)-space at fixed values of (zr, zi).
Note that arbitrary nonlinear constraints (4.1) on z always lead to linear constraints
(4.2) on ż leading to a linearly equality constrained quadratic minimization problem,
which can directly be solved by a matrix equation as in the unconstrained case (2.32).
The strategy is illustrated in figure 4.1, which shows schematically the elliptical isolines
of I for fixed z as a function of (żr, żi). The values of the parameters z determine the
shape and the position of the parabola as well as the slope of the plane ḟ = 0. In figure
4.1, żabs denotes the absolute minimum of I, obtained from equation (2.32). The plane
ḟ = 0 (equation (4.3)) divides the 2np-dimensional (żr, żi)-space into the two half-spaces
ḟ < 0 and ḟ ≥ 0. The point żcon is the constrained minimum of I in the half-space
ḟ ≥ 0, which lies on its boundary, i.e. on the plane ḟ = 0 as explained above.

As long as f > fmin, żabs determines the evolution of the parameters. However when
f = fmin is reached, then żcon is taken for the further integration of the trajectories z(t)
until żabs, driven by the constrained evolution of the parameters, eventually crosses the
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4. Inequality constrained TDVP

plane ḟ = 0 from ḟ < 0 to ḟ > 0 . At this point, żabs and żcon coincide and żabs is
taken again for further integration, since ḟ > 0 leads to an increase of f(t) with time,
according to the constraint.

For the extension to multiple, say m, active constraints the real scalar valued func-
tion f(zr, zi) is simply replaced by the real vector valued function f(zr, zi) ≡ f(z̄) =
(f1, . . . , fm) ∈ Rm.

Now that the nonholonomic nonlinear inequality constraints (4.1) on z are reduced to
the holonomic linear equality constraints (4.3) on ż by the constrained TDVP, we can
determine the constrained minimum żcon by a standard method like Lagrangian multi-
pliers. Alternatively, the constrained minimum can also be obtained by elimination of
the dependent variational parameters. We prefer the method of Lagrange multipliers
due to its generality. The method of Lagrange multipliers yields a compact form of the
equations of motion for arbitrary constraints and the conditions for switching off the
constraints are obtained with only little additional numerical effort as will be shown be-
low. Both methods, however, require a minimization problem with equality constraints.
When inequality constraints are applied, the elimination of dependent variational pa-
rameters is not possible.

We construct the function
L = I + λM̄ ˙̄z (4.4)

with the Lagrangian multipliers λ ∈ Rm and the real valued m × 2np matrix M̄ = ∂f
∂z̄

.
The minimum of I under the constraint (4.2) is found by ∂L/∂ω = 0 where

ω ≡

 żr

żi

λ

 ≡
(

˙̄z
λ

)
∈ R2np+m.

We obtain a set of linear equations(
K̄ M̄T

M̄ 0

)(
˙̄z
λ

)
=

(
h̄
0

)
, with K̄ =

(
Kr −Ki

Ki Kr

)
, h̄ =

(
hi

−hr

)
, (4.5)

where the matrix K and the vector h are the complex quantities of equation (2.32). If
no constraint is active, i.e. m = 0, then equation (4.5) obviously reduces to the real
formulation of equation (2.32). We use a real formulation, i.e. complex quantities are
split into their real and imaginary parts, because real constraints like f > fmin naturally
lead to real Lagrangian multipliers.

The constraint (4.3) is switched off again when żabs crosses the plane ḟ = 0 from
ḟ < 0 to ḟ > 0. Finding this event can be accomplished in two ways. The trivial
but computationally expensive way is to calculate not only żcon from (4.5), which is
needed for integration, but additionally żabs (from equation (2.32)) after every time step
of integration and to check when ḟ |żabs

changes its sign. This inefficient procedure would
require the solution of a complex np × np matrix equation for żabs and additionally the
solution of the real (2np +m)× (2np +m) matrix equation for żcon. However it is much
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4.2. Inequality constrained TDVP applied to GWP

more efficient to check when λ changes its sign for the special case m = 1. If more than
one constraint is active, m > 1, it is recommended to solve the matrix equation (4.5)
by decomposition into two blocks, as indicated by the horizontal line in equation (4.5),
namely into

K̄ ˙̄z + M̄T λ = h̄ (4.6)

obtained by the upper part of equation (4.5), and the lower part

M̄ ˙̄z = 0, (4.7)

which represents the active constraints. The solution for the unknowns ˙̄z,λ is obtained
by first solving equation (4.6) for ˙̄z

˙̄z = K̄−1h̄− K̄−1M̄T λ (4.8)

and inserting it in equation (4.7) in order to eliminate ˙̄z. The result is a small m ×m
matrix equation for determining λ

M̄K̄−1M̄T︸ ︷︷ ︸
m×m

λ = M̄K̄−1h̄ ∈ Rm. (4.9)

The conditions for switching off any of the active constraints are now contained in the
right hand side of equation (4.9), since

ḟ |żabs
≡ ∂f

∂z̄
˙̄zabs ≡ M̄ ˙̄zabs ≡ M̄K̄−1h̄ (4.10)

due to the definitions. The ith active constraint (1 ≤ i ≤ m) is to be switched off when
the ith component of ḟ |żabs

changes its sign from minus to plus.
When we insert the Lagrange multipliers calculated from (4.9) in (4.8) we obtain

żcon, needed for propagation. Numerically, the calculation of K̄−1h̄ and K̄−1M̄T in (4.9)
requires only one factorization of the large matrix K̄. After multiplying with M̄ from the
left the small set of linear equations (4.9) for determining λ is obtained. Compared to
the factorization of K̄ the solution of the m×m matrix equation (4.9) for the Lagrange
multipliers is negligible, since the number of parameters n will in general exceed the
number of constraints m by far, e.g. in our numerical calculation presented in section
4.3 for the basis of 11 GWPs there is 2np = 132 and the number m of simultaneously
active constraints is not larger than two.

4.2. Inequality constrained TDVP applied to GWP

When GWP are used as trial function, it is convenient to formulate a set of linear
equations for the coefficients v = vr + ivi first and then to obtain ż from (3.30a)-
(3.30d) in a second step, just as was done in chapter 3. For these coefficients vr and vi,
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4. Inequality constrained TDVP

summarized by the notation (vr,vi) = v̄, a similar set of linear equations is obtained.
Equations (3.30a)-(3.30d) which describe the connection between the time derivatives of
the parameters and the coefficients, are written in real formulation, where all complex
quantities are split into their real and imaginary parts. We obtain

Ȧk
r = −1

2
V k

2r − 2((Ak
r)

2 − (Ak
i )

2), (4.11a)

Ȧk
i = −1

2
V k

2i − 2Ak
rA

k
i − 2Ak

iA
k
r , (4.11b)

ṗk = −vk
1r − V k

2rq
k + 2Ak

rΛ
kvk

1i + 2Ak
rΛ

kV k
2iq

k, (4.11c)

q̇k = Λkvk
1i + ΛkV k

2iq
k + pk, (4.11d)

γ̇k
r = −vk

0r − vk
1r · qk − 1

2
qkV k

2rq
k + pkΛkvk

1i + pkΛkV k
2iq

k − trAk
i +

1

2
(pk)2, (4.11e)

γ̇k
i = −vk

0i − qk · vk
1i −

1

2
qkV k

2iq
k + trAk

r , (4.11f)

with Λk = 1
2
(Ak

i )
−1.

Using the notation z̄ = (A1
r, A

1
i ,p

1,q1, γ1
r , γ

1
i , . . . , A

N
r , A

N
i ,p

N ,qN , γN
r , γ

N
i ) the com-

plete set of equation (4.11) for all k = 1, . . . , N , which are linear in (vk
0 ,v

k
1 , V

k
2 ), may be

written in short form ˙̄z = Ũ v̄ + d̃. The matrix Ũ is block-diagonal with N blocks. Each
block consists of those coefficients in equation (4.11) linear in (vk

0 ,v
k
1 , V

k
2 ). The constant

terms are absorbed in the vector d̃. The linear equality constraint (4.3) for a GWP trial
function reads

ḟ =
N∑

k=1

(
∂f

∂Ak
r

Ȧk
r +

∂f

∂Ak
i

Ȧk
i +

∂f

∂pk
· ṗk +

∂f

∂qk
· q̇k +

∂f

∂γk
r

γ̇k
r +

∂f

∂γk
i

γ̇k
i

)
= 0 (4.12)

where the notation

∂f

∂Ak
r

Ȧk
r =

D∑
l,j=1

∂f

∂(Ak
r)lj

(Ȧk
r)lj (4.13)

is used. Expressing the time derivatives in equation (4.12) by the coefficients vr and vi

using (4.11), m arbitrary constraints (f = (f1, ..., fm) ∈ Rm) imply

ḟ =
∂f

∂z̄
Ũ v̄ +

∂f

∂z̄
d̃ ≡ Ū v̄ + d̄ = 0, (4.14)

and hence a set of linear equations for (vr,vi) and the Lagrange multipliers λ ∈ Rm is
obtained

(
K̄ ŪT

Ū 0

)(
v̄
λ

)
=

(
r̄

−d̄

)
, with K̄ =

(
Kr −Ki

Ki Kr

)
, r̄ =

(
rr

ri

)
. (4.15)
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4.3. 2D diamagnetic hydrogen atom

Here, the matrix K = Kr + iKi and the vector r = rr + iri are the left and right hand
side of equation (3.28), respectively.

We now have all equations needed for propagation of coupled GWPs subject to arbi-
trary constraints (4.1). Instead of (3.28) we solve (4.15) for (vr,vi) (when no constraints
are active both sets of equations are equivalent) after each time step. These coefficients
are inserted in (3.30a)-(3.30d) (or equivalently in (4.11)) to obtain the time derivatives
of the Gaussian parameters, which are needed by the integration routine to integrate
the next time step. The explicit constraints suitable to prevent the breakdown of the
wave packet propagation are introduced in section 4.3 for the model calculations on the
two-dimensional diamagnetic Kepler problem.

4.3. 2D diamagnetic hydrogen atom

The method of GWPs propagation developed so far is now applied to a model system.
The matrix singularity problem is addressed and adequate inequality constraints are
introduced. The computations are performed for a two-dimensional model potential,
viz. a harmonic oscillator with an anharmonic perturbation. The Hamiltonian of the
system is

H = −1

2

(
∂2

∂µ2
+

∂2

∂ν2

)
+ V (µ, ν), (4.16)

with the potential

V (µ, ν) = α(µ2 + ν2) +
1

8
β2µ2ν2(ν2 + µ2), (4.17)

and the parameters α = 0.5, β = 0.2. As described in chapter 6 the Hamiltonian (4.16)
effectively describes the diamagnetic hydrogen atom in a 2D rotating frame. In the ro-
tating frame the semiparabolic coordinates µ =

√
r + z and ν =

√
r − z are treated like

Cartesian coordinates ranging from minus to plus infinity. Here, the 2D diamagnetic hy-
drogen atom (4.16) serves as a test ground for investigating the propagation of coupled
GWPs (3.4). Since the potential is polynomial, the integrals needed to set up the ma-
trix equation (3.28) are moments of complex Gaussians and are computed recursively in
appendix A.1. The equations of motion (3.30a)-(3.30d) as obtained from unconstrained
variation become ill-behaved with increasing number of GWPs leading to tiny step sizes
of the integration or in the worst case to a complete breakdown of the method. As
explained above these numerical problems occur when the matrix K in the equations of
motion becomes nearly singular. For the case of numerical singularity of the matrix a
singular value decomposition for the solution of the linear equations has been proposed
[14]. This prevents the propagation from a breakdown due to a failure of the inversion
of the singular matrix, however, the equations of motion obtained from applying the
singular value decomposition are still ill-behaved in the sense that the time steps of the
integration stay impracticably small [12]. The reason for the ill-conditioned matrix as
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Figure 4.2.: Equipotential lines of the potential (4.17) together with the hexagonal grid,
where the GWPs used for the computations in this section are initially
placed.

obtained from unconstrained variation is investigated for the model system (4.16) and
suitable constraints are introduced which heal the numerical problem of tiny step sizes
by keeping the matrix K regular. The additional error introduced by the constraints is
investigated. The numerical efficiencies of the different propagation techniques, i.e. prop-
agation with and without constraints are compared. To demonstrate the high accuracy
of the method comparisons with exact computations with the split-operator method are
presented. The split-operator method is briefly explained in appendix C.

For the computations in this chapter a superposition of GWPs (3.4) is used whose
centers qk ≡ (µk, νk), k = 1, . . . , N are placed on a 2D equidistant grid in position
space (µ, ν). The equidistant hexagonal grid together with the isolines of the poten-
tial of the system are shown in figure 4.2. An equidistant hexagonal grid is chosen
to distribute the GWPs in space with preferably large distance to their next neigh-
bors. The regular hexagonal grid is not centered with respect to the potential in order
to obtain no undesired, incidental symmetry in the wave functions. The GWPs are
distributed around the minimum of the potential (4.17). In fig. 4.2 those grid points
(µk, νk) are plotted with V (µk, νk) ≤ 8.5. The computations in this section are per-
formed for initial wave functions consisting of different numbers N of GWPs each placed
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4.3. 2D diamagnetic hydrogen atom

on selected grid points in figure 4.2. All GWPs are chosen to be initially real valued,
i.e. their initial momenta pk(τ = 0), k = 1, . . . , N are zero and their width matrices
are purely imaginary. For these width matrices the particularly simple diagonal form
Ak(τ = 0) = i

2
1, k = 1, . . . , N is chosen. Remember that for the GWP (3.1) to be

normalizable the imaginary part of the complex symmetric matrices Ak must be positive
definite. In absence of the anharmonic coupling in the potential (4.17), the above choice
of Ak(t = 0) yields coherent states of the harmonic oscillator and the widths are constant
in time. The norms of the individual GWPs are selected in the way that there is one
large GWP surrounded by small “satellite” GWPs.

In order to find adequate constraints that prevent the matrix K from becoming sin-
gular, it is suggestive to investigate the evolution of the eigenvalues of the matrix during
the integration together with the step size of the integration algorithm. Here an Adams
integration routine is applied to a superposition of N = 11 GWPs. The results are
plotted in fig. 4.3. In panel (a) the step size ∆τ of the integration routine, necessary to
match the prescribed error tolerances is shown as a function of time τ . The step sizes
vary between 10−3 and 10−2, except for two short intervals where ∆τ suddenly becomes
about three orders of magnitude smaller ∆τ ≈ 5× 10−6, i.e. the method gets very slow.
The intervals of slow integration are 14.6 ≤ τ ≤ 16.3 and 40.6 ≤ τ ≤ 41.9, where most
of the computational time of the numerical integration is spent. As mentioned above,
numerical problems occur when the matrix K associated with the equations of motion
becomes ill-conditioned. It is therefore worthwile to check its eigenvalues during integra-
tion. Of special interest are the least and the largest eigenvalues of this matrix, whose
ratio known as the condition number characterizes the regularity of a matrix. The least
and the largest eigenvalues are plotted in fig. 4.3(b) as functions of time. There is an
apparent correlation between the tiny time steps around τ ≈ 15 and τ ≈ 41 and the
very large magnitude of the largest eigenvalue λmax at these intervals, while the least
eigenvalues stays unaffected. This means that the matrix singularities which render the
method impracticably slow come from diverging eigenvalues λmax instead of vanishing
eigenvalues λmin. The situation of diverging eigenvalues depicted here by one example,
seems to be quite general and was encountered in different systems. For further inves-
tigations we use the Gershgorin circle theorem [46], which states that all eigenvalues of
a n× n matrix lie within n circles in the complex plane whose centers are the diagonal
elements of the matrix and their radii are the sums of the modulus of the off diagonal
elements along the corresponding column or row, respectively. Following this theorem,
very large eigenvalues of a matrix are only possible when there are some very large ma-
trix elements too. The matrix elements of the matrix K (3.28) are Gaussian overlap
integrals of the form

〈
gl|µmνn|gk

〉
. Very large matrix elements are possible when the

norm
〈
gk|gk

〉
becomes unreasonably large for some GWPs. This can occur when the de-

terminant of the imaginary part of the complex symmetric width matrix Ak approaches
zero for some GWPs which means that some GWPs become extremely broad. The
other possibility is that some GWPs have very large amplitude, i.e. the imaginary part
of the phase γk becomes too negative for some GWPs leading to exponential increase
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Figure 4.3.: (a) Step size required by the integration routine to match the prescribed
error tolerance. (b) Least and largest eigenvalues of the matrix K associated
with the equations of motion. There is an apparent correlation between the
tiny required step size at τ ≈ 15 and τ ≈ 41 and the magnitude of the
largest eigenvalue of the matrix K.
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Figure 4.4.: Imaginary part of the phase factors γk for all 11 GWPs. Some γk
i , k =

1, . . . , 11 are especially small around τ ≈ 15 and τ ≈ 41 and cause the
numerical problems shown in fig. 4.3.

of the norm ||gk||2 ∝ exp(−2γk
i ) (for the evaluation of the integrals see appendix A.1).

Inspection of the imaginary parts γk
i of all 11 GWPs in fig. 4.4 reveals that indeed very

negative values of γk
i are the reason for the extremely large eigenvalues. Whenever some

of the γk
i become too small, which happens here in the intervals 14.6 ≤ τ ≤ 16.3 and

40.6 ≤ τ ≤ 41.9, the method of GWP propagation becomes impracticably slow or may
even completely break down. Therefore reasonable constraints which prevent the matrix
from becoming singular are the requirements

fmin ≡ γmin ≤ fk(z̃) = Im γk = γk
i , k = 1, ..., N (4.18)

on the amplitudes of the GWP. In the computation presented in figs. 4.3 and 4.4 a value
of about γmin = −9.0 should be adequate. For those constraints which are currently
active (γk

i = γmin) equation (4.3) using (4.11) translates into

γ̇k
i = −vk

0i − qk · vk
1i −

1

2
qkV k

2iq
k + trAk

r = 0. (4.19)

Therefore, the entries of Ū in equations (4.14) and (4.15) are mostly zero except for the
terms of equation (4.19) linear in v0,v1 or V2 and d̄ = trAk

r . This especially simple case
of constraints, where Gaussian parameters are bounded directly, leads to temporary

37



4. Inequality constrained TDVP
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Figure 4.5.: Comparison of the step sizes applied by the integration routine to meet
the error tolerance, without constraints (red line) as in fig. 4.3(a) and with
constraints (4.18) with γmin = −9.0 (blue line).

freezing these parameters γk
i when γk

i = γmin is reached. Instead of using Lagrange
multipliers the equations of motion alternatively can be obtained by elimination of the
dependent parameters. The frozen γk

i must be simply ignored in the variation. However,
in that case additional calculations are necessary to find the criteria for switching off the
constraints.

In cases where the restriction on the amplitudes (4.18) is not adequate, an upper
bound on the maximum of the allowed overlap of neighboring GWPs or a lower bound
on the least eigenvalue of the matrix K can be applied.

The gain of efficiency introduced by the constraints (4.18) with γmin = −9.0 as com-
pared to the unconstrained propagation is impressively visualized by plotting the asso-
ciated step sizes of the same initial wave function with the same error tolerance. For
comparison both time steps are plotted in figure 4.5. The red line shows again the re-
quired step size of the unconstrained propagation as shown already in fig. 4.3 (a) which
become tiny in the intervals 14.6 ≤ τ ≤ 16.3 and 40.6 ≤ τ ≤ 41.9. The blue line shows
the required time steps with the constraints γmin = −9.0 ≤ γk

i for k = 1, . . . , 11. For
times τ . 14.6 the step sizes of both propagation methods exactly agree as is expected,
since the constraints γk

i ≥ −9.0 become active at τ = 14.6 (see fig. 4.4) when one of the
γk

i reaches γmin for the first time. Up to this time both computations are identical. The

38



4.3. 2D diamagnetic hydrogen atom
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Figure 4.6.: Imaginary parts of the normalization parameters γk for k = 1, . . . , 11 subject
to the constraints γk

i ≥ γmin = −9.0. Obviously the constraints become
active for only short time periods while the full variational freedom of the
trial function is left otherwise. For a better orientation the value of γmin =
−9.0 is marked by a dotted line.

extremely slow integration during the periods 14.6 ≤ τ ≤ 16.3 and 40.6 ≤ τ ≤ 41.9 is
accelerated by three to four orders of magnitude. When no constraints are applied most
time of the integration process is spent on such singularity points, and thus with the
constraints the overall integration time is reduced by orders of magnitude, making the
method applicable in the first place.

The parameters γk
i of the constrained propagation are plotted in fig. 4.6. In terms of

fig. 4.1, żabs is taken for integration during τ ≤ 14.6, i.e. as long as γk
i > −9.0 when

γk
i = γmin is reached, żcon is used for the further propagation leaving γk

i = γmin for the
relevant k until at some later point in time γ̇k

i becomes positive again, e.g. at τ ≈ 16.3 in
fig. 4.6. In practice, a CPU time of about 20 hours needed for unconstrained propagation
could be reduced to a few minutes when using constraints.

4.3.1. Error introduced by the constraints

The error of the TDVP has been estimated in section 2.4. We now investigate the
additional error introduced by the constraints for the model Hamiltonian (4.16). The
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4. Inequality constrained TDVP

error of the variational approximation without constraints is compared to the error of
the computation with the constraints (4.18) for a chosen value of γmin = −9.0.

The square root of I in eq. (2.15) at its minimum is a measure of the accuracy of
the variational approximation [43, 44], c.f. section 2.4. Its value is zero for the exact
solution, and according to eq. (2.38) it presents an upper bound on the local error
implied by the TDVP. Therefore a comparison of the square roots of the minima I|żabs

of the unconstrained propagation and I|żcon of the constrained propagation allows for an
estimate of the loss of accuracy introduced by the constraints.

A comparison of the square roots of the minima in fig. 4.7 shows that the error bound
of the constrained propagation (blue) is practicably not increased at τ ≈ 14.6, i.e. the
time when the constraints are switched on, as compared to the error bound of the
unconstrained propagation (red), see fig. 4.7(a). In the long run, see fig. 4.7(b), the
constrained approximation may be even better than the unconstrained approximation,
although a poorer approximation of the constrained wave function to the exact one would
be expected.

An explanation might be that the approximate wave function determined by TDVP
is not always the “best” possible approximation of the trial function to the exact wave
function [43]. There might be regions on the manifold of the trial function that are
closer to the exact wave function than the function determined variationally, especially
when the manifold has a large curvature and long time intervals are considered. This
fact, together with the insensitivity of the wave function to small variations of the pa-
rameters in some directions in case of a singular matrix, may explain the behavior of
only temporary slight loss of accuracy introduced by the constraints. The insensitivity
of the trial wave function to the constraints can also be deduced from investigating the
auto-correlation functions C(t) = 〈χ(t = 0)|χ(t)〉 obtained by both methods since they
almost coincide and no deviation from each other could be seen.

A hint for properly chosen constaints is to monitor the norm of the trial function
during the propagation. The constraints destroy the exact conservation of the norm,
but for an adequate value of γmin the loss of norm is only within a few percent for typical
propagation times. We conclude that the use of constraints can accelerate the numerical
computations by orders of magnitude without any significant loss of accuracy of the
results.

4.3.2. Comparison with exact computations

To demonstrate the power of the constrained GWP method a superposition of 30 GWPs
having all the same width and zero momenta, again distributed on the grid in fig. 4.2 is
employed. This initial wave packet is propagated by three different methods. The real
parts of the resulting auto-correlation functions are plotted in figure 4.8. The imagi-
nary parts, not shown the figure, exhibit similar qualitative behavior. The result of the
constrained propagation is plotted with the blue line, and the result of frozen Gaussian
propagation is plotted with the green line. For reference the numerically exact propa-

40



4.3. 2D diamagnetic hydrogen atom

 0

 1

 2

 3

 4

 5

 6

 7

  0   10   20   30   40   50

||i
χ. -H

χ|
|

τ

(b)

 1

 2

 3

 4

 5

14.0 14.5 15.0 15.5 16.0 16.5 17.0

||i
χ. -H

χ|
|

τ

(a)

Figure 4.7.: Accuracy of the variational approximation with (blue) and without (red)
use of the constraints (4.18) with γmin = −9.0. The local upper bound
(2.38) on the variational approximations is plotted (a) in the region where
the constraints become active for the first time and (b) in the long run. At
τ ≈ 14.6, i.e. at the time when the constraints are switched on, nearly no
increase of the error bound of the constrained propagation as compared to
unconstrained propagation is visible. On the long run the error bound on
the computation with constraints is even lower in the average than without
constraints.
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4. Inequality constrained TDVP

gation is performed by the split-operator method [47] (red line, for a short explanation
see appendix C). The result of our constrained (γk ≥ −6.0) GWP propagation is mostly
very accurate and nearly no deviation from the exact solution is visible during the whole
propagation time. By contrast, the result obtained from the frozen Gaussian propaga-
tion, where the width matrices are kept fixed, turns out to be much less accurate. This
becomes particularly apparent for long propagation times, where the deviation between
the exact time signal and the time signals obtained from constrained “thawed” width,
i.e. without keeping the width matrices fixed, propagation is still very good. This is not
completely unexpected since the constrained trial function still has more free variational
parameters than the frozen GWP method and therefore the constrained calculation is
somewhat slower. Note that an unconstrained propagation of these 30 GWPs with
“thawed” widths according to the TDVP is not possible, because of matrix singularities.
The deviation of the two GWP auto-correlation functions to the numerically exact one

is revealed in fig. 4.9. Throughout the plotted time range, the constrained propagation
is accurate while the frozen GWP method looses its accuracy.

With the propagated wave packet at hand it is possible to obtain the eigenvalues of
the Hamiltonian (4.16) by Fourier transform or harmonic inversion (for a review of the
harmonic inversion method see [48–51]) of the auto-correlation function and even to
extract the eigenfunctions of the system [52, 53]. The eigenvalues Ei resulting from the
harmonic inversion of the time signals presented in fig. 4.8 are plotted with blue impulses
for the constrained GWP computation and are compared with the numerically exact
eigenvalues (red impulses) in fig. 4.10. The amplitudes of the lines in the spectrum are
determined by the magnitude of overlap between the initial trial function |χ(τ = 0)〉 and
the eigenstate |Ei〉. For a better comparison the numerically exact results are inverted.
Both spectra show good agreement.

With the tool of constraining the GWPs, the equations of motion become well behaved
and the basis for further computations is established. We now turn to the physical 3D
hydrogen atom.
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4.3. 2D diamagnetic hydrogen atom
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Figure 4.8.: Real part of the auto-correlation function C(τ) for the 2D diamagnetic Ke-
pler problem. The initial wave function is a superposition of 30 GWP po-
sitioned on the grid shown in fig. 4.2. Variational propagation with the
constraints γk ≥ −6.0 (blue line) is compared with numerically exact calcu-
lations obtained with the split-operator method (red line) and with frozen
GWP propagation, where the width of the GWPs is fixed (green line). The
results of the constrained calculation and the numerically exact calculation
agree very well, i.e. nearly no deviations are visible, while the frozen Gaus-
sian computation shows larger deviations especially for long propagation
times.
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Figure 4.9.: Accuracy of the auto-correlation functions shown in fig. 4.8. The differ-
ence between the frozen Gaussian propagation and the exact computation
is plotted by the green line. The difference between the constrained Gaussian
propagation and the exact computation is plotted by the blue line.
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-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0  2  4  6  8  10  12  14  16

| 〈
E

i|χ
(0

)〉
 |

Ei

split operator method
TDVP with constraints

Figure 4.10.: Eigenvalues extracted from the auto-correlation function of fig. 4.8 by har-
monic inversion. The amplitudes of the spectrum are given by the magni-
tude of the overlap of the initial wave function |χ(τ = 0)〉 with the respec-
tive eigenstate |Ei〉. The results obtained by the constrained GWP method
are plotted with blue impulses, the results of the numerically exact compu-
tation are plotted with red inverted impulses for comparison. Both spectra
show good agreement.
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5. Wave packet dynamics in the
hydrogen atom

The success of applying the TDVP on a quantum system crucially depends on the
choice of the trial function. GWPs are certainly well suited for smooth and nearly
harmonic potentials. Therefore the Coulomb potential is not a promising candidate for
successfully propagating GWPs directly. Nevertheless, the GWP method based on the
local harmonic approximation has already been applied in one dimension to the singular
Coulomb-potential [22–24]. A regularization [25, 26] originally introduced in the field
of classical celestial mechanics, but also adapted to the hydrogen atom [54], transforms
the Coulomb potential to a harmonic potential with a restriction. In the regularized
hydrogen atom the application of the GWP method should therefore be able to yield
exact results when the restriction can be handled. The regularization implies a fictitious
time variable which has been shown to be the eccentric anomaly of the corresponding
classical orbit [55]. Various approaches have been made to construct coherent states
for the hydrogen atom [56–60] in the fictitious time in analogy to the coherent states
found by Schrödinger [61] for the harmonic oscillator. These approaches construct the
coherent states as the eigenstates of the lowering operators associated with the harmonic
potential. The hydrogen atom in an external magnetic field and in crossed electric and
magnetic fields has attracted much attention in recent decades [27–30]. Both systems
show a transition from regularity to chaos in the underlying classical mechanics and
hence the systems allow for an investigation of the impact of irregular classical dynamics
on quantum spectra, i.e. the phenomenon of “quantum chaos”. The hydrogen atom with
and without external fields presents a fundamental quantum system. It is desirable to
extend the GWP method to be successfully applied also to the hydrogen atom with and
without external fields in such a way that the hydrogen atom itself is treated exactly
by the GWP method, and only the external fields need a variational approximation.
In this chapter we discuss the regularization of the hydrogen atom and the exact wave
propagation in the fictitious time. The TDVP is then applied to the hydrogen atom in
external fields in chapter 6.
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5. Wave packet dynamics in the hydrogen atom

5.1. Regularization of the hydrogen atom

The time-independent Schrödinger equation for the hydrogen atom reads

H3ψ =

(
−1

2
∆3 −

1

r

)
ψ = Eψ, (5.1)

with ∆3 the Cartesian form of the Laplace operator. A regularization of the singular
Coulomb potential is obtained by introducing Kustaanheimo-Stiefel (KS) coordinates
u = (u1, u2, u3, u4) [25, 26] which are introduced here, according to [56], differing by a
factor of two as compared to the original definition

x1 ≡ x = u1u3 − u2u4,

x2 ≡ y = u1u4 + u2u3,

x3 ≡ z =
1

2

(
u2

1 + u2
2 − u2

3 − u2
4

)
. (5.2)

Introducing a fourth component x4 with the constant value zero to the physical position
vector x = (x1, x2, x3, x4) the transformation can be written in matrix notation

x = L(u)u, (5.3)

with the matrix

L(u) =
1

2


u3 −u4 u1 −u2

u4 u3 u2 u1

u1 u2 −u3 −u4

u2 −u1 −u4 u3

 . (5.4)

The introduction of the auxiliary degree of freedom, which makes the originally three-
dimensional problem four-dimensional, implies a restriction on physically allowed wave
functions ψ, i.e.

Xψ ≡
(
u2

∂

∂u1

− u1
∂

∂u2

− u4
∂

∂u3

+ u3
∂

∂u4

)
ψ = 0. (5.5)

With the definition in equation (5.2) it follows

2r = 2(x2 + y2 + z2)1/2 = u2
1 + u2

2 + u2
3 + u2

4. (5.6)

The Schrödinger equation (5.1) transformed in Kustaanheimo-Stiefel coordinates reads(
− 1

2u2
∆4 −

2

u2

)
ψ = Eψ, (5.7)

with ∆4 the four-dimensional Cartesian form of the Laplace operator. Multiplication
with u2 and reordering of the terms yields

Hψ =

(
−1

2
∆4 − Eu2

)
ψ = 2ψ. (5.8)
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5.1. Regularization of the hydrogen atom

Equation (5.8) is not a standard linear eigenvalue problem. A scaling of the coordinates

u →
√
nu, H → nH, (5.9)

and setting

E = − 1

2n2
, (5.10)

leads to the time-independent Schrödinger equation

Hψ =

(
−1

2
∆4 +

1

2
u2

)
ψ = 2nψ, (5.11)

which represents the Schrödinger equation of the four-dimensional harmonic oscillator
with the restriction given in equation (5.5). The scaling parameter which takes only
integer values n = 1, 2, 3, . . . turns out to be the principal quantum number of the
hydrogen atom.

5.1.1. Eigenstates of the regularized hydrogen atom

The product of the four one-dimensional eigenstates of the four harmonic oscillators,
i.e. the separation of eq. (5.11) in the Cartesian coordinates (u1, u2, u3, u4), in general
violates the restriction (5.5) and therefore presents unphysical solutions. The restriction
in equation (5.5) rather suggests the introduction of two sets of polar coordinates, namely
the semiparabolic coordinates

u1 = µ cosϕµ,
u2 = µ sinϕµ,

and
u3 = ν cosϕν ,
u4 = ν sinϕν ,

(5.12)

with the associated angular momenta (pi = 1
i

∂
∂ui

)

Lµ = u1p2 − u2p1 = 1
i

∂
∂ϕµ

,

Lν = u3p4 − u4p3 = 1
i

∂
∂ϕν

,
(5.13)

such that the restriction (5.5) can be written as

Lµ = Lν ≡ Lz. (5.14)

The connection between the physical Cartesian coordinates and the semiparabolic coor-
dinates is obtained using the definitions (5.2) and (5.12)

x = µν(cosϕµ cosϕν − sinϕµ sinϕν) = µν cos(ϕµ + ϕν) = µν cosϕ,
y = µν(cosϕµ sinϕν + sinϕµ cosϕν) = µν sin(ϕµ + ϕν) = µν sinϕ,
z = 1

2
(µ2 − ν2) ,

(5.15)

49



5. Wave packet dynamics in the hydrogen atom

with the physical azimuthal angle ϕ = ϕµ + ϕν . In the semiparabolic coordinates the
Schrödinger equation reads[

−1

2
∆µ −

1

2
∆ν +

1

2

(
µ2 + ν2

)]
ψ = 2n ψ, (5.16)

with

∆ρ =
1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2

∂2

∂ϕ2
ρ

, ρ = µ, ν. (5.17)

The Schrödinger equation is separated in two 2D harmonic oscillators in the coordinates
µ, ϕµ and ν, ϕν respectively. The solution is the product wave function

ψ(µ, ν, ϕ) = ΦNµm(µ)ΦNνm(ν)eimϕ (5.18)

where [
− 1

2ρ

∂

∂ρ
ρ
∂

∂ρ
+
m2

2ρ2
+

1

2
ρ2

]
ΦNρm(ρ) = (2Nρ + |m|+ 1)ΦNρm(ρ), (5.19)

with ρ = µ, ν and Nρ = 0, 1, 2, . . . . The coordinate representation of the eigenstates is

ΦNρm(ρ) =

√
N !

π(Nρ + |m|)
ρ|m|L

|m|
Nρ

(ρ2)e−
1
2
ρ2

, (5.20)

with the associated Laguerre polynomials L
|m|
Nρ

. For the principal quantum number n
introduced above we obtain the relation

n = Nµ +Nν + |m|+ 1 = 1, 2, 3 . . . , (5.21)

and therefore via equation (5.10) the correct Rydberg spectrum.
To perform time-dependent computations it is necessary to formulate the time-depen-

dent version of the Schrödinger equation (5.11). In analogy to the usual identification
E → i ∂

∂t
where t is the physical time, the “fictitious time” variable τ is introduced, c.f.

[56, 58] as the conjugate variable to the principal quantum number n

2n→ i
∂

∂τ
. (5.22)

The regularized Schrödinger equation for the hydrogen atom in the fictitious time then
reads

i
∂

∂τ
ψ = Hψ. (5.23)

In this chapter and in chapter 6 the fictitious time τ will simply be denoted by the term
time for brevity. The real time t will be named physical time.

In Kustaanheimo-Stiefel coordinates the restriction (5.5) on physically allowed wave
functions must explicitly be accounted for when the Hamiltonian (5.11) in KS coordinates
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5.2. Restricted Gaussian wave packets in Kustaanheimo-Stiefel coordinates

is used. On the other hand, the KS coordinates are of Cartesian form and therefore are
especially suitable for a Gaussian ansatz of the form (3.1). They are the exact solutions
of the field-free hydrogen atom (5.11), provided the restriction is fulfilled. The question
is about the impact of the restriction on a GWP trial function. Can the restriction be
exactly fulfilled by a Gaussian in the first place, and in case, are those GWPs fulfilling the
restriction reasonable trial functions in the sense that they still present a complete basis
set? The advantage of the formulation of the Hamiltonian in semiparabolic coordinates
(5.16) is that the restriction (5.5) is already incorporated. The semiparabolic coordinates
bear the difficulty to find trial functions for the exact solution of the time-dependent
Schrödinger equation, which have not the simple Gaussian form. The reason is that
although the potential is harmonic, the Laplace operator is not of Cartesian form, c.f.
(5.17), but rather has radial character.

We now turn to the investigation of the impact of the restriction (5.5) on a Gaussian
trial function and the discuss the properties of the resulting restricted GWP.

5.2. Restricted Gaussian wave packets in
Kustaanheimo-Stiefel coordinates

The regularization of the hydrogen atom in section 5.1 has transformed the Coulomb
potential to a harmonic potential in the Schrödinger equation (5.11). The aim is now to
find exact wave packet propagation in the fictitious time τ for the hydrogen atom. The
choice of GWPs as trial functions is especially suitable, since they present exact solu-
tions of harmonic oscillators, however, the restriction (5.5) on physically allowed wave
functions must be fulfilled. We therefore must investigate the impact of the restriction
(5.5) on a 4D Gaussian wave packet in Kustaanheimo-Stiefel coordinates. Consider the
Gaussian ansatz (3.1) in KS coordinates u

g(y,u) = ei((u−q)A(u−q)+π·(u−q)+γ), (5.24)

where, in general, A is a complex symmetric 4×4 matrix and the momentum π and center
q are real, 4-dimensional vectors in the Kustaanheimo-Stiefel coordinates, representing
the expectation values of the position and the momentum operator, respectively, i.e.
q = 〈g|u|g〉 and π =

〈
g|1

i
∇4|g

〉
. The phase and normalization is given by the complex

scalar γ. Collectively the parameters are denoted by y = (A,π,q, γ). The Gaussian wave
packet (5.24) in general does not obey the restriction (5.5) on physical wave functions, i.e.
the use of these 4D GWPs as trial functions would lead to unphysical results. However it
is shown now that the restriction can be fulfilled by a 4D GWP if the space of admissible
configurations of the parameters y is confined. Consider the structure matrix

J =


0 1 0 0

−1 0 0 0
0 0 0 −1
0 0 1 0

 , (5.25)
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5. Wave packet dynamics in the hydrogen atom

which allows for the compact notation of the restriction (5.5)

Xψ = uJT∇4ψ = 0. (5.26)

The application of the constraint operator X on the trial function (5.24) yields

Xg(y,u) = uJT (2A(u− q) + π) g(y,u)
!
= 0. (5.27)

The result is a quadratic polynomial in the coordinates u times the GWP itself. The
restriction (5.27) should be satisfied pointwise for all u ∈ R4. For nontrivial wave packets
the polynomial in (5.27) must vanish and an algebraic equation is left,

2uJTAu + uJT (π − 2Aq)
!
= 0. (5.28)

This is only possible if all coefficients of the second order polynomial in (5.28) are zero.
Let us first investigate the linear term whose coefficients must vanish, i.e.

JT (π − 2Aq) = 0. (5.29)

For the wave function to be normalizable it is necessary that the imaginary part of the
symmetric matrix A is non zero, especially it must be positive definite. According to
their definition the expectation values π and q must be real and therefore (5.29) only
holds if

q = 0, and π = 0. (5.30)

For the restriction (5.27) to be exactly fulfilled also the bilinear form in (5.28) must be
zero, i.e.

2uJTAu = 0. (5.31)

This is exactly the case when the matrix of the bilinear form JTA is skew symmetric,
i.e. JTA = −(JTA)T = −AJ . Explicitly the matrix reads

JTA =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

·


a11 a12 a13 a14

a12 a22 a23 a24

a13 a23 a33 a34

a14 a24 a34 a44

 =


−a12 −a22 −a23 −a24

a11 a12 a13 a14

a14 a24 a34 a44

−a13 −a23 −a33 −a34

 .

For the matrix JTA to be skew symmetric A must have the following symmetries. The
diagonal elements of JTA must vanish,

a12 = a34 = 0, (5.32)

and from the off diagonal elements we obtain

a11 = a22, a33 = a44, a24 = −a13, a23 = a14. (5.33)
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5.2. Restricted Gaussian wave packets in Kustaanheimo-Stiefel coordinates

Obviously, only four parameters are left. Thus the overall number of parameters has
reduced from originally 4 × (4 + 1)/2 + 4 + 1 = 15 complex parameters of the general
GWP in four dimensions (where the variational freedom of the two real vectors q,π is
understood as a single complex vector, in the spirit of eq. (3.25)) to only 5 independent
parameters of the GWP

g(y,u) = ei(uAu+γ) (5.34)

satisfying the restriction (5.27). With the definitions a11 = aµ, a33 = aν , a13 = ax,
a14 = ay, in matrix notation A reads

A =


aµ 0 ax ay

0 aµ ay −ax

ax ay aν 0
ay −ax 0 aν

 . (5.35)

The question arises whether the restricted GWPs form a complete basis set, such that
any physically allowed state can be expanded in this basis. Indeed it is not obvious
whether a superposition of restricted GWPs (5.34) whose centers are all located at the
origin and only differ by their complex widths, is flexible enough to represent arbitrary
quantum states. The usual form of the resolution of the identity [62] for a continuous
basis set of normalized, unrestricted GWPs of the form (5.24) is

1 =
1

(2π)4

∫
dπ4dq4|g(y)〉〈g(y)|, (5.36)

where the width of each GWP basis state is kept fixed. Anyway, this formula is not
applicable to the restricted GWPs (5.34), since both parameters π and q do not run
from minus to plus infinity but must be set to zero according to the restriction and
the only freedom we have in the restricted GWP (5.34) is to vary the 5 independent
parameters in the width matrix A (5.35). However, it must be kept in mind, that it
is sufficient to require the restricted GWPs to be complete in the three-dimensional
physical space only. It is not necessary that any (possibly unphysical) wave function in
the four-dimensional KS space is expandable in the restricted GWP basis. To clarify
this question it is advantageous to transform the restricted GWP in KS coordinates into
Cartesian coordinates of the 3D space

g(y,x) = ei(uAu+γ) (5.37a)

= ei(aµ(u2
1+u2

2)+aν(u2
1−u2

2)+2ax(u1u3−u2u4)+2ay(u1u4+u2u3)+γ) (5.37b)

= ei(aµµ2+aνν2+2axx+2ayy+γ) (5.37c)

= ei(aµ(r+z)+aν(r−z)+2axx+2ayy+γ) (5.37d)

= ei((aµ+aν)r+(aµ−aν)z+2axx+2ayy+γ) (5.37e)

= ei(prr+p·x+γ), (5.37f)
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5. Wave packet dynamics in the hydrogen atom

with the semiparabolic coordinates µ2 = r+z, ν2 = r−z. In (5.37f) the set of parameters
(aµ, aν , ax, ay) is replaced by an equivalent set of parameters, viz.

px = 2ax,

py = 2ay,

pz = aµ − aν ,

pr = aµ + aν , (5.38)

and the three complex Gaussian parameters px, py, pz are summarized in the complex
vector p = (px, py, pz). As a side note, it is mentioned that the matrix A can be written
as a superposition of Dirac matrices αi, i = x, y, z and β in standard notation [63] by
A = pr1 + pzβ + pyα

x + pxα
z. For normalization it is necessary that Im pr > 0, yielding

an exponential damping for r →∞. Choosing pr = iε the restricted GWP in Cartesian
coordinates (5.37f) reduces to a plane wave eip·x if the Gaussian parameters px, py, pz

are chosen real valued in the limit ε → 0. Since plane waves eip·x are known to form a
complete basis it can be concluded that the restricted GWP (5.37f), forming a superset
of plane waves, are also complete or even over-complete. However, they are not complete
with respect to the expansion of unphysical functions in the four-dimensional KS space.

The GWP (5.37) has been constructed to satisfy the restriction (5.5). Furthermore
the set of restricted GWPs has been argued to be complete and any physical wave
function is expandable in the basis set. Their time evolution, contained in the time-
dependent parameters, is an exact solution of the time-dependent Schrödinger equation
(5.11), and can even be determined analytically, as shown below. These features make
the restricted GWP basis particularly convenient for the propagation of states in the
regularized hydrogen atom. The scope of the next section is the expansion and exact
time evolution of wave functions in the basis (5.37), and in addition, in modified bases
sets for certain symmetry subspaces of the hydrogen atom.

5.3. Analytical wave packet dynamics in the hydrogen
atom

For the expansion of arbitrary states without any well defined angular momentum quan-
tum number l or m, the basis states (5.37) are employed. Their analytic, exact dynamics
followed by a description of the expansion of arbitrary wave functions in the restricted
GWP basis, and example calculations are presented in subsection 5.3.1. Analogous re-
sults are shown in subsection 5.3.2 for wave packets with well defined magnetic quantum
number m, and in subsection 5.3.3 for radial wave packets with well defined quantum
numbers l,m.

54



5.3. Analytical wave packet dynamics in the hydrogen atom

5.3.1. Propagation of wave packets without well defined angular
momentum

The aim is an exact time propagation of arbitrary wave functions in the H atom. The
initial wave function ψ(0) is expanded as a superposition of the restricted GWPs (5.37).
These basis states are then propagated analytically in time. We start with the time
evolution of the basis states. For the restricted GWPs (5.37) the dynamics can be
calculated analytically as will be shown now. The equations of motion for the 4×4 width
matrix A and the complex phase factor γ are given by (3.30). Taking into account that
the linear terms in the exponent of the restricted GWP (5.37a) vanish, i.e. π = q = 0,
the linear potential coefficients v1 must also vanish due to their definition in eq. (3.9).
The equations of motion (3.30) thus reduce to

Ȧ = −2A2 − 1

2
V2, (5.39a)

γ̇ = i trA− v0. (5.39b)

In the absence of external fields the GWP method yields exact results since the potential
of the Schrödinger equation (5.11) is harmonic. The coefficients v0, V2 of the effective
potential need not be determined by solving a matrix equation as prescribed by the
TDVP, but can be directly read from the potential in the Hamiltonian (5.11) V (u) =
(u2

1 + u2
2 + u2

3 + u2
4)/2 to be

v0 = 0, v1 = 0, V2 = 1. (5.40)

Both equations (5.39) can be solved analytically. Most easily equation (5.39a) is solved
when introducing two auxiliary complex matrices B,C according to A = 1

2
BC−1, c.f. eq.

(3.31), with the initial condition B(0) = 2A(0), and C(0) = 1. Then (5.39a) is replaced
by the two equations Ċ = B and Ḃ = −C or equivalently B̈ = −B. Due to the diagonal
form of V2, the matrices B and C have the same structure as the width matrix A (5.35),
with the solution for the matrix B

bµ(τ) = 2aµ(0) cos τ − sin τ,

bν(τ) = 2aν(0) cos τ − sin τ,

bx(τ) = 2ax(0) cos τ,

by(τ) = 2ay(0) cos τ, (5.41)

and for the matrix C

cµ(τ) = cos τ + 2aµ(0) sin τ,

cν(τ) = cos τ + 2aν(0) sin τ,

cx(τ) = 2ax(0) sin τ,

cy(τ) = 2ax(0) sin τ. (5.42)
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5. Wave packet dynamics in the hydrogen atom

The matrix A is obtained from the above definition A = 1
2
BC−1 and the four elements

in the form of eq. (5.38) read

pr(τ) =
pr(0) cos 2τ + 1

2
((pr(0))2 − (p(0))2 − 1) sin 2τ

Z(τ)
,

px(τ) =
px(0)

Z(τ)
,

py(τ) =
py(0)

Z(τ)
,

pz(τ) =
pz(0)

Z(τ)
, (5.43)

where p = |p| and Z(τ) abbreviates the expression

Z(τ) = cos2 τ +
(
(pr(0))2 − (p(0))2

)
sin2 τ + pr(0) sin 2τ. (5.44)

With the matrix A at hand it is possible to solve the integral (5.39b) for γ. The phase
and normalization of the wave function e−iγ with the initial value γ(0) = 0 reads

N (τ) ≡ e−iγ(τ) =
1

2

(
(pr(0))2 − (p(0))2 + 1

)
+

1

2

[(
(p(0))2 − (pr(0))2 + 1

)
cos 2τ + 2pr(0) sin 2τ

]
. (5.45)

A time-independent factor is introduced for normalization of the wave packet to unity,
i.e.

N0 =
π

2
√

Imaµ(0)Imaν(0)− (Imax(0))2 − (Imay(0))2
. (5.46)

The analytic time evolution of the wave function is obtained by inserting the time-
dependent parameters in the wave function (5.37f) which finally reads

g(τ,y(0),x) =
1

N (τ)N0

× exp

[
i (2(p(0) · x + pr(0)r cos 2τ) + ((pr(0))2 − (p(0))2 − 1) r sin 2τ)

2N (τ)

]
. (5.47)

This is an important intermediate result. The time evolution of a restricted GWP
(5.37f) is analytically computed and takes the compact form (5.47). The parameters in
eqs. (5.43) and (5.45) are periodic functions of the time τ with period π. The periodicity
carries over to the π-periodic wave function (5.47). In the physical time wave packets
disperse in the hydrogen atom [64]. By contrast, the wave packets in the fictitious time
show an oscillating behavior with no long time dispersion in τ .

Now that the time evolution of basis states is known we want to expand arbitrary
functions in the basis states (5.37f). The time evolution of arbitrary states is then ana-
lytically given by the superposition of the time-dependent restricted GWPs g(τ,y(0),x)
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5.3. Analytical wave packet dynamics in the hydrogen atom

(5.47). Particularly we are interested in the expansion of states localized around a given
point x0,p0 in the physical position and momentum space, respectively. An arbitrary
function ψ(x) is written as a superposition of wave packets of the form (5.37f)

ψ(x) =
N∑

k=1

g(yk,x) ≡
N∑

k=1

ei(ak
µµ2+ak

νν2+ak
xx+ak

yy+γk) ≡
N∑

k=1

ei(pk
rr+pk·x+γk), (5.48)

where the two sets of parameters yk = (ak
µ, a

k
ν , a

k
x, a

k
y, γ

k) and yk = (pk
r ,p

k, γk) as intro-
duced in section 5.2 are equivalent. The index k runs over all wave packets, and N is
the number of employed basis functions. In general the number N of packets required
for an exact expansion is infinite. However, for numerical computations it will in general
be sufficient to use a finite number of basis functions to obtain converged results.

A procedure for finding the “optimal” expansion for a given number N of basis states
is to minimize the deviation

∆ = ||ψ(x)−
N∑

k=1

g(yk,x)||2 !
= min. (5.49)

with respect to the parameters yk, k = 1, · · · , N [9]. This is a nontrivial task. Equation
(5.49) presents a highly nonlinear minimization problem which is solved by searching for
stationary points ∂∆

∂yk = 0, k = 1, . . . , N . In general many stationary points exist. The
stationary point found by a standard minimization routine like the conjugate gradients
method, depends on the initial choice of the parameters. For different starting points
different stationary points may be found. Comparison yields the best approximation,
i.e. hopefully the global minimum. Alternatively a method which is supposed to find the
global minimum directly could be applied. These simulated annealing methods combine
a random walk and a standard minimum search [65].

Here an alternative and more direct approach based on a Fourier transform is chosen.
The restricted GWPs (5.37f) contain plane waves for real pk ∈ R3 and pk

r = iε with an
infinitely small but positive ε. Now, the procedure is the following. The initial state ψ(x)
to be expanded is Fourier transformed into momentum space. The Fourier transformed
state

ψ̃(p) = (2π)−3/2

∫
d3xψ(x)e−ip·x (5.50)

provides the weights and relative phases of the superposition of plane waves contributing
to the desired state. The inverse Fourier transform recovers the original state in position
space representation

ψ(x) = (2π)−3/2

∫
d3p ψ̃(p)eip·x. (5.51)

However, a finite number of restricted 4D GWPs is desired for the expansion and prop-
agation. The backward Fourier integral (5.51) is therefore discretized and approximated
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5. Wave packet dynamics in the hydrogen atom

by a finite sum

ψ(x) ≈ (2π)−3/2

N∑
k=1

(∆p)3
k ψ̃(pk)eipk·x. (5.52)

Comparison of the right hand sides of eqs. (5.48) and (5.52) yields the complex Gaus-
sian parameters pk as the (real valued) sampling points of a numerical integration in
equation (5.52). The inverse Fourier transform (5.51) presents a three-dimensional in-
tegration and a Monte Carlo technique appears to be convenient. In principle other
numerical integration algorithms might be possible. The comparison implies pk

r = 0
which is not allowed for normalized states. The damping parameters pk

r which guaran-
tee normalized basis states must be chosen with a positive imaginary part. A common
damping parameter pk

r = iε, k = 1, . . . , N is suggested for all basis states and the value
of ε is small but positive and depends on the desired accuracy of the expansion. For
convergence it must be chosen small enough that eiprr ≈ 1 in the region where the wave
function to be expanded differs significantly from zero. The complete information of the
expanded state ψ(x) is contained in the phases γk and is obtained to be

(2π)−3/2 (∆p)3
k ψ̃x0p0(p

k)
!
= eiγk

(5.53)

Note that in the limit ε→ 0, N →∞ the expansion is exact. The presented procedure
allows for an expansion of arbitrary states in the basis functions (5.37f). A localization
of ψ(x) at x0,p0 away from the origin presents no difficulty.

A natural choice of a wave packet with localization x0,p0 in position and momentum
space is a Gaussian wave packet. The Fourier transformation can be performed ana-
lytically and a Monte Carlo technique, with Gaussian, randomly distributed sampling
points is especially suitable for the inverse Fourier transform. The normalized Gaussian
wave packet reads

ψx0p0(x) = (2πσ2)−3/4e−
1

4σ2 (x−x0)2+ip0·(x−x0) (5.54)

with the center x0 and momentum p0 (not to be mixed up with the parameters pk of
the basis states (5.48)) and the width σ in the basis of (5.48). The Fourier transform
into momentum space is performed analytically and yields

ψ̃x0p0(p) =

(
2σ2

π

)3/4

e−σ2(p−p0)2−ix0·p. (5.55)

For fast convergence of the inverse Fourier integral a normalized Gaussian weighting
function

w(p) =
σ√
π
e−σ2(p−p0)2 , (5.56)

for the Monte Carlo integration (5.52) is introduced. The weighting function has the
same width as the wave packet in momentum space and the sampling points pk of the
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5.3. Analytical wave packet dynamics in the hydrogen atom

numerical integration are distributed according to (5.56). We obtain

ψx0p0(x) = (2πσ2)−3/4 1

N

N∑
k=1

ei(x−x0)·pk

, (5.57)

and

γk = −i log

[
(2πσ2)−3/4

N

]
− x0 · pk. (5.58)

The final result of this subsection is thus

ψ(τ,x) = N0

N∑
k=1

g(τ,yk(0),x)eiγk

, (5.59)

where yk(0) = (pk
r ,p

k, 0) with the Gaussian distributed pk according to (5.56) and the
γk are given by eq. (5.58). For higher accuracy of the expansion of the GWP (5.54)
in the basis states (5.37f) it is possible to Fourier transform rather ψx0,p0(x)eεr than
ψx0,p0(x) itself. For analytical integrability the exponential εr is expanded in a Taylor
series around the center x0 of the GWP, i.e. εr = ε(|x0|+ x0

|x0| · (x− x0)) +O(x2).

In fig. 5.1 an initially Gaussian wave packet (5.54) expanded and propagated analyt-
ically in a basis of N = 10000 restricted GWP basis states is plotted. The basis states
are propagated according to eq. (5.47), without the normalization factor N0 but instead
multiplied by a factor eiγk

with the initial values of γk given by eq. (5.58), which guaran-
tees normalization of the total wave packet. The probability density in the z = 0 plane is
plotted at equidistant times with step size ∆τ = π/5. The initial GWP presented in fig.
5.1 for τ = 0 is centered at x0 = (8, 0, 0) with the mean momentum p0 = (1, 2, 0). The
damping factor is set to ε = 0.01. Classically the electron with these initial conditions is
running on the ellipse plotted by dots on the bottom of each panel in fig. 5.1. For every
time step, that part of the ellipse that has been passed by the electron so far is shown
by a black solid line for time resolved comparison. The position of the maximum of the
probability density agrees well with the classical position of the electron on the ellipse
for all times. The π-periodicity of the motion is reflected by the coincidence of the wave
packet after one period at τ = π with the initial GWP at τ = 0.

5.3.2. Propagation of wave packets with conserved angular
momentum component lz

In this subsection basis functions based on the restricted GWP (5.37c) with a well
defined angular momentum component lz = m are presented. This case is especially
important in view of chapter 6.2, where an external magnetic field applied to the H
atom is considered, since the rotational symmetry is maintained. First wave packets
with definite lz are constructed and their exact, analytic dynamics in the H atom is
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Figure 5.1.: Propagation of the initially Gaussian wave packet (5.54) located at x0 =
(8, 0, 0) with the momentum p0 = (1, 2, 0) plotted in the plane z = 0. The
classical Kepler ellipse with the same initial conditions is plotted by a dotted
line on the bottom of each panel. For time resolved comparison, that part
of the ellipse that has been traversed by the particle so far in each plot is
shown by a solid black line. Although the Gaussian wave packet does not
stay Gaussian during the period it follows in general the classical path and
is recovered after one period τ = π, indicating the periodicity of the wave
packet.
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5.3. Analytical wave packet dynamics in the hydrogen atom

discussed. Then we introduce a procedure to expand quantum states of defined lz in the
basis states.

A rotationally symmetric restricted GWP (5.37) is obtained by setting 2ax ≡ px =
2ay ≡ py = 0 in (5.37c), i.e.

g0(y,x) = ei(aµµ2+aνν2+γ) = ei(prr+pzz+γ). (5.60)

These states are symmetric with the quantum number m = 0, but can be generalized to
arbitrary m by

gm(y,x) = (µν)|m|ei(aµµ2+aνν2+γ)eimϕ = ρ|m|ei(prr+pzz+γ)eimϕ. (5.61)

The time-dependent parameters are y = (aµ, aν , γ). The quantum numberm is constant.
As will be shown, the wave packet (5.61) still presents an exact solution to the regularized
Schrödinger equation. The Laplace operator in semiparabolic coordinates (5.19) and the
time derivative applied to the wave packet (5.61) read

∆gm(y,x) =
[
4i (aµ + aν) (1 + |m|)− 4a2

µµ
2 − 4a2

νν
2
]
gm(y,x),

i
∂

∂τ
gm(y,x) =

(
−ȧµµ

2 − ȧνν
2 − γ̇

)
gm(y,x), (5.62)

and thus the Schrödinger equation (5.16) yields

0 =

(
−i ∂

∂τ
+H

)
gm(y,x)

gm(y,x)

= ȧµµ
2 + ȧνν

2 + γ̇ −
[
2i (aµ + aν) (1 + |m|)− 2a2

µµ
2 − 2a2

νν
2
]
+

1

2

(
µ2 + ν2

)
.

This equation is exactly solved if the Gaussian parameters obey the equations of motion

ȧµ = −2a2
µ −

1

2
Vµ, (5.63a)

ȧν = −2a2
ν −

1

2
Vν , (5.63b)

γ̇ = 2i (aµ + aν) (1 + |m|)− v0, (5.63c)

or using the matrix notation (5.35) for A (with ax = ay = 0)

Ȧ = −2A2 − 1

2
V2, (5.64a)

γ̇ = i trA (1 + |m|)− v0, (5.64b)

with v0 = 0, Vµ = 1, Vν = 1 and V2 = 1. The equations of motion for the two
remaining complex width parameters aµ and aν stay completely unchanged as compared
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5. Wave packet dynamics in the hydrogen atom

to the restricted GWP in subsection 5.3.1. The only change is the additional factor of
(1 + |m|) in equation (5.64b) for the phase parameter γ. The solution of the equations
(5.64a) is

aµ(τ) =
2(aµ(0)− aν(0)) + 2(aµ(0) + aν(0)) cos(2τ)− (1− 4aµ(0)aν(0)) sin(2τ)

Z(τ)
,

aν(τ) =
2(aν(0)− aµ(0)) + 2(aµ(0) + aν(0)) cos(2τ)− (1− 4aµ(0)aν(0)) sin(2τ)

Z(τ)
,

with

Z(τ) = 2 [1 + 4aµ(0)aν(0) + (1− 4aµ(0)aν(0)) cos(2τ) + 2 (aµ(0) + aν(0)) sin(2τ)] .

The solution of eq. (5.64b) is (1 + |m|) times the solution of eq. (5.39b) and the phase
and normalization of the wave function Nm(τ) = e−iγ with γ(0) = 0 reads

Nm(τ) ≡ e−iγ(τ)

=

{
1 + 4aµ(0)aν(0) + (1 + 4aµ(0)aµ(0)) cos(2τ) + 2(aµ(0) + aν(0)) sin(2τ)

2

}|m|+1

.

(5.65)

The norm of the wave function (5.61) at τ = 0 with γ(0) = 0 is

Nm(0) =
πm!(

2
√

Im aµ(0)Im aν(0)
)|m|+1

, (5.66)

and the time evolution of the normalized wave packet (5.61) is

gm(τ,y(0), µ, ν) =
1

Nm(τ)Nm(0)
(µν)|m|ei(aµ(τ)µ2+aν(τ)ν2)eimϕ. (5.67)

The time evolution of the basis states with constant magnetic quantum number m (5.67)
is the basis for the propagation of arbitrary states with lz = m, which are expanded in
the basis states (5.67) for τ = 0.

The expansion of states with definite angular momentum lz = m in the basis states
(5.61) follows a similar procedure as demonstrated in subsection 5.3.1. Suitable coor-
dinates are needed where the GWP part (5.60) of the basis functions (5.61) describes
plane waves. This is provided by the parabolic coordinates ξ = r + z, η = r − z when
setting aµ = pξ + iε and aν = pη + iε. The basis states (5.61) eq. (5.61) in parabolic
coordinates read

gm(y,x) = (ξη)|m|/2 ei(pξξ+pηη+γ)e−ε(ξ+η)eimϕ, (5.68)
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which contain plane waves in the limit ε → 0. In analogy to subsection 5.3.1 the
expansion of an arbitrary state

ψm(x) = ρ|m|ψ(ρ, z)eimϕ =
N∑

k=1

(µν)|m|ei(ak
µµ2+ak

νν2+γk)eimϕ

=
N∑

k=1

ρ|m|ei(pk
rr+pk

zz+γk)eimϕ

=
N∑

k=1

(ξη)|m|/2ei(pk
ξ ξ+pk

ηη+γk)−ε(ξ+η)eimϕ (5.69)

in parabolic coordinates is investigated. The common prefactor (ξη)|m|/2eimϕ can be
separated and an expansion of the ψ(ρ, z) ≡ ψ(ξ, η) part remains. Due to the conditions
ξ, η > 0 resulting from the definition of the parabolic coordinates it is possible to use
the Laplace transformation instead of the Fourier transformation for the expansion of
ψ(ξ, η). The Laplace transform in two dimensions reads

ψ̃(p̃ξ, p̃η) = L{ψ(ξ, η)} =

∫ ∞

0

∫ ∞

0

dξdηψ(ξ, η)e−p̃ξξ−p̃ηη, (5.70)

In the Laplace transformation the conjugate variable, i.e. the momenta p̃ξ, p̃η, may be
complex, which allows for the incorporation of the damping factor ε in the complex
“momenta” p̃ξ, p̃η. This is possible because the damping factor e−εr = e−ε(ξ+η) separates
in the parabolic coordinates while it does not in Cartesian coordinates. It is therefore
not necessary to require an infinitesimal ε > 0 (in contrast to subsection 5.3.1) in order
to obtain an accurate expansion, but any positive value leads to accurate results for a
sufficiently large number N of basis states. The inverse Laplace transformation is given
by

L−1{ψ̃(p̃ξ, p̃η)} =
1

(2πi)2

∫ c+i∞

c−i∞

∫ c+i∞

c−i∞
dp̃ξdp̃ηψ̃(p̃ξ, p̃η)e

p̃ξξ+p̃ηη, (5.71)

where the integration runs parallel to the imaginary axes with an arbitrary distance c,
as long as the integrals (5.71) and (5.70) exist. The path of integration, i.e. the distance
c is chosen to be −ε in order to reproduce the functional form of eq. (5.68) in the kernel
of eq. (5.71). The complex momenta p̃ξ and p̃η on the path of integration are written
in the form p̃ξ = −ε + ipξ and p̃η = −ε + ipη. Then the inverse Laplace transformation
reads

L−1{ψ̃(p̃ξ, p̃η)} =
1

(2π)2

∫ +∞

−∞
dpξdpηψ̃(−ε+ ipξ,−ε+ ipη)e

i(pξξ+pηη)e−ε(ξ+η). (5.72)

Note that the Laplace transformation (5.70) guarantees L−1{ψ̃(p̃ξ, p̃η)} = 0, in the for-
bidden region ξ, η < 0. Formally it is allowed to include the negative regime ξ, η < 0
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and to extend the integration ranges from [0,∞] to [−∞,∞]. For some wave functions
this can simplify the integration. In general, integration ranges of [ξA,∞] and [ηA,∞] in
eq. (5.70) yield L−1{ψ̃(p̃ξ, p̃η)} = 0 for ξ < ξA, η < ηA and the original wave function is
recovered, i.e. L−1{ψ̃(p̃ξ, p̃η)} = ψ(ξ, η) in the region ξ > ξA, η > ηA. In the discretized
version eq. (5.72) reads

ψ(ξ, η) =
N∑

k=1

(∆p)2
kψ̃(−ε+ ipk

ξ ,−ε+ ipk
η)e

i(pk
ξ ξ+pk

ηη)e−ε(ξ+η). (5.73)

The functional form of the part ei(pξξ+pηη)e−ε(ξ+η) in eq. (5.73) exactly matches the func-
tional form of the basis states in eq. (5.68) after separation of the common prefactor. By
comparison, the initial Gaussian parameters pk

ξ , p
k
η in eq. (5.69) are identified with the

momenta pk
ξ and pk

η in (5.73), which are the sampling points of the numerical integration.

The complex phase parameters γk for each basis state (5.68) must be

γk = −i log

[
(∆p)2

k

(2π)2
ψ̃(−ε+ ipk

ξ ,−ε+ ipk
η)

]
, (5.74)

and contain the whole information about the quantum state.
As an example we investigate a Gaussian wave packet in parabolic coordinates located

around ξ0 and η0 with the mean momenta pξ0 and pη0 , width σ and amplitude A

ψ(ξ, η) = Ae−(ξ−ξ0)2/(4σ2)−(η−η0)2/(4σ2)+ipξ0
(ξ−ξ0)+ipη0 (η−η0), (5.75)

which is expanded and propagated in the basis states (5.68). First perform the Laplace
transform (5.70) with an extension of the integration range from [0,∞] to [−∞,∞].
Nevertheless the application of complex momenta is allowed since an exponential increase
of the integrand due to the factor e−ε(ξ+η) for ξ, η → −∞ is intercepted by the strong
Gaussian decay of ψ(ξ, η) and the integral converges. The transformation yields

ψ(p̃ξ, p̃η) = 4πσ2Ae−σ2[(pξ0
−pξ)2+(pη0−pη)2]+2iσ2ε((pξ0

−pξ)+(pη0−pη))+2σ2ε2+ε(ξ0+η0)−i(pξξ0+pηη0),
(5.76)

with p̃ξ = −ε + ipξ and p̃η = −ε + ipη. The numerical integration of the inverse
transformation is again performed by a Monte Carlo technique. The sampling points
pk

ξ , p
k
η are randomly distributed around pξ0 , pη0 according to the weighting function

w(p) = (σ/
√
π)e−σ2(p−p0)2 . The initial values of the phase factors γk read

γk = −i
[
log

(
A

N

)
+ (2σ2ε2 + ε(ξ0 + η0))

]
+2σ2ε((pξ0 − pξ) + (pη0 − pη))− (pξξ0 + pηη0). (5.77)

Thus the time evolution of the wave packet (5.75) reads

ψ(τ, ξ, η) = Nm(0)
N∑

k=1

gm(τ,yk(0), ξ, η)eiγk

, (5.78)
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Figure 5.2.: Propagation of a GWP (5.75) with magnetic quantum number m = 0. The
part on the negative ρ-axis is obtained by reflecting the positive part at the
z-axis. The figure shows the associated probability density for a fixed angle
ϕ around the z-axis. The wave packet runs along the classical Kepler ellipse
with the corresponding initial values. For details see text.

with yk(0) = (pk
ξ , p

k
η, 0) and the time evolution of the basis states (5.67) in parabolic

coordinates.

In fig. 5.2 the expansion of a GWP (5.75) is shown with the center ξ0 = η0 = 25.0
and the momenta pξ0 = 0.535 and pη0 = −0.117 or in terms of cylindrical coordinates
ρ0 = 25.0, z0 = 0.0 and pρ0 = 0.419, pz0 = 0.652 and the width σ = 4.472. Note that
a Gaussian shape of a wave packet in parabolic coordinates is nearly Gaussian also in
cylindrical coordinates (see e.g. the wave packet at τ = 0 in fig. 5.2). The presented wave
function has zero angular momentum component lz = 0. The originally positive radial
coordinate ρ is extended to take on negative values and the symmetry ψ(−ρ) = ψ(ρ)
is used. The (ρ, z)- plane presents the probability density ρ|ψ(ρ, z)|2 along a plane of
constant azimuthal angle ϕ = const. The complete probability density is obtained by
rotation about the z-axis due to the rotational symmetry. The Kepler ellipses plotted
on the bottom in each panel of fig. 5.2 show the corresponding classical motion of the
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5. Wave packet dynamics in the hydrogen atom

particle with the initial conditions given above. The second ellipse again is obtained by
reflection symmetry as the intersection of the torus, which is obtained from rotating the
ellipse around the z-axis, with the intersecting plane ϕ = const. At times τ ≈ 2π/5 and
τ ≈ 4π/5 the high probability density close to the z-axis leads to interference patterns.
After one period τ = π the initial wave function τ = 0 is recovered. N = 5000 modified
basis states (5.68) with ε = 0.05 are employed. Results for the case m 6= 0 are not
presented since they show similar qualitative behavior.

5.3.3. Wave packet propagation with conserved angular momentum
l2, lz

The procedure of the two previous subsections is applied to quantum states with a
conserved angular momentum l2, lz. First an extension of the basis states (5.37f) to
basis states with well defined angular momentum quantum numbers l,m is presented
and they are shown to be exact solutions of the time-dependent Schrödinger equation of
the regularized H atom. Then the procedure of expanding states with definite l,m in the
constructed basis states together with an example are presented. For radial symmetry
the complex width matrix A (5.35) of the restricted GWP must be a multiple of the
identity matrix A = a1, i.e. ax = ay = 0, aµ = aν = a. The restricted GWP reduces to

g(r) = ei(2ar+γ). (5.79)

This is a suitable basis state with vanishing angular momentum. The correct extension
to arbitrary angular momentum is given by

glm(r, θ, ϕ) = rlei(2ar+γ)Ylm(θ, ϕ), (5.80)

where Ylm(θ, ϕ) denotes the spherical harmonics. Insertion of the ansatz (5.80) into the
time-dependent version of the Schrödinger equation (5.11) in spherical coordinates(

− ∂2

∂2r
r +

l2

r
+ r

)
glm(r, θ, ϕ) = iġlm(r, θ, ϕ) (5.81)

yields [
−4i(l + 1)a+ γ̇ + r(1 + (2a)2 + 2ȧ)

]
glm(r, θ, ϕ) = 0. (5.82)

The basis sates (5.80) present an exact solution of the Schrödinger equations provided
the time-dependent parameters obey the equations of motion

ȧ = −2a2 − 1

2
, (5.83a)

γ̇ = 4ia(l + 1), (5.83b)

with the analytic solution

a(τ) =
4a(0) cos(2τ)− (1− 4(a(0))2) sin(2τ)

2 [1 + 4(a(0))2 + (1− 4(a(0))2) cos(2τ) + 4a(0) sin(2τ)]
(5.84)
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5.3. Analytical wave packet dynamics in the hydrogen atom

and

γ(τ) = i log
[(

1 + 4(a(0))2 + (1− 4(a(0))2) cos(2τ) + 4a(0) sin(2τ)
)
/2
]
. (5.85)

Now we come to the expansion of states with definite quantum numbers l,m in the basis
(5.80) and make the ansatz

ψlm(r, θ, ϕ) = rlψ(r)Ylm(θ, ϕ) =
N∑

k=1

glm(r, θ, ϕ) =
N∑

k=1

rlei(2akr+γk)Ylm(θ, ϕ). (5.86)

The common factor rlYlm(θ, ϕ) is separated and the problem is reduced to expand the
radial part ψ(r) only. The proceeding is the same as in subsection 5.3.2, i.e. a super-
position of plane waves is constructed using discrete Laplace transformation. Having
computed the wave function ψ̃(p̃r) in the complex momentum space by

ψ̃(p̃r) =

∫ ∞

b

drψ(r)e−p̃rr (5.87)

the original wave function in position space representation ψ(r) is recovered by the
inverse Laplace transformation

ψ(r) =
1

2πi

∫ c+i∞

c−i∞
dp̃rψ̃(p̃r)e

p̃rr, (5.88)

in the region r > b. For r < b it yields ψ(r) = 0. An extension of the integration
range to negative values and also b→ −∞ is possible as long as the integrals exist. The
existence of the integrals depends on the decay of the wave function ψ(r) for r → ±∞.
The choice b = −∞ simplifies the integration for some wave functions. Choosing the
path of integration c = −ε gives the desired functional dependence on r. The complex
momentum p̃r = −ε + ipr along the path is inserted in the inverse Laplace transform
(5.88) and yields

ψ(r) =
1

2π

∫ +∞

−∞
dprψ̃(−ε+ ipr)e

iprr−εr (5.89a)

≈ 1

2π

N∑
k=1

∆pk
r ψ̃(−ε+ ipk

r)e
ipk

rr−εr. (5.89b)

The second line is the discrete form of the integral, and is identified with the part∑N
k=1 e

i(2akr+γk) in eq. (5.86). Comparison demands to set 2iak = −ε + ipk
r and for the

phase parameters γk we obtain

γk = −i log

[
ψ̃(−ε+ ipk

r)∆p
k
r

2π

]
. (5.90)
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5. Wave packet dynamics in the hydrogen atom

In the following explicit computations are performed for the radial Gaussian function

ψ(r) = Ae−(r−r0)2/(4σ2)+ipr0 (r−r0), (5.91)

with the Laplace transformed function (b = −∞) in momentum space

ψ̃(−ε+ ipr) = A4πσ2e−σ2(pr0−pr)2+2iσ2ε(pr0−pr)+σ2ε2+εr0−iprr0 , (5.92)

where again the integral (5.89a) is numerically integrated using Monte Carlo technique
with the sampling points pk

r being Gaussian distributed random numbers according to
the distribution w(p) = σ/

√
πe−σ2(pr0−pr)2 . The phases γk are identified to be

γk = −i
[
log

(
A

N

)
+ σ2ε2 + εr0

]
+ 2σ2ε(pk

r − pr0)− pk
rr0. (5.93)

The results of the propagation of the wave function ψlm(r, θ, ϕ) = rlψ(r)Ylm(θ, ϕ) with
ψ(r) of eq. (5.91) and the initial values r0 = 10, pr0 = −0.5 and the width σ = 3
is presented in fig. 5.3 for different times 0 ≤ τ ≤ π. The imaginary parts of 2ak

are set to ε = 0.2 and the number of basis states (5.80) is N = 10000. In panel (a)
the angular momentum is set to m = l = 0 and in panel (b) the components of the
angular momentum are l = 5 and m = 0. Due to the negative initial value of the radial
momentum pr0 the wave is initially running towards the nucleus located at the origin.
The wave function with zero angular momentum (a) comes close to the origin r = 0.
Similar to the radial symmetric case in subsection 5.3.2 there appears to occur some
interference pattern due to the overlapping parts of the incoming wave function at the
inner turning point for τ = 2π/5. In the nonvanishing angular momentum case (fig.
5.3(b)) the barrier of rotational energy prevents the wave function from reaching the
nucleus. Instead there is a turning point whose distance from the nucleus increases with
increasing angular momentum. Again an interference pattern is observed (τ = 2π/5)
at the inner turning point. In both panels the maximum of the probability density
overshoots the position of the initial maximum r0 = 10 at τ = 4π/5 due to the initial
kinetic energy and returns to the initial wave packet after the period τ = π, indicating
the periodicity of the wave function.
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Figure 5.3.: Propagation of the wave function (5.86) with ψ(r) given by the Gaussian
(5.91) with r0 = 10.0, pr0 = −0.5 and σ = 3.0 for angular momentum
quantum numbers (a) l = 0, m = 0, and (b) l = 5, m = 0. An interference
pattern is observed at the turning points at approximately τ = 2π/5 in
both panels. The initial wave function is expanded in N = 10000 basis
states (5.80) with ε = 0.2.
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6. Wave packet dynamics in the
hydrogen atom in external fields

The wave packets constructed in chapter 5 are exact solutions of the field-free hydrogen
atom. This is no longer true when external fields are applied. The approximate evo-
lution of the wave packets is determined by the TDVP. A sufficiently large number of
wave packets is required for accurate results. In the presence of a single external homo-
geneous field the rotational symmetry of the H atom is preserved and the corresponding
component of the angular momentum, say lz, is conserved. It is in this case especially ad-
vantageous to employ the wave packets introduced and discussed in subsection 5.3.2 and
to perform computations in the subspaces of the different magnetic quantum numbers
m separately. When two crossed external fields are applied, the cylindrical symmetry is
broken and computations are performed in the basis of the restricted GWPs discussed
in subsection 5.3.1. First the Kustaanheimo-Stiefel regularization is applied to the hy-
drogen atom in homogeneous external electric and magnetic fields, in analogy to section
6.1. Then the wave packet dynamics for the hydrogen atom in a magnetic field and in
crossed electric and magnetic fields is investigated in sections 6.2 and 6.3, respectively.

6.1. Regularized hydrogen atom in external fields

When external fields are applied the Kustaanheimo-Stiefel regularization of the hydrogen
atom is introduced in the same manner as in section 5.1. In this thesis perpendicular
electric and magnetic fields are considered. The electric field of strength F is assumed
to lie along the x axis and the magnetic field B is assumed to lie along the z axis. The
Schrödinger equation in Cartesian coordinates reads

H3ψ =

(
−1

2
∆3 −

1

r
+

1

2
Blz +

1

8
B2(x2 + y2) + Fx

)
ψ = Eψ. (6.1)
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6. Wave packet dynamics in the hydrogen atom in external fields

In a first step the regularization procedure described in section 5.1 yields the Hamiltonian
in KS coordinates

H4ψ =

[
− 1

2u2
∆4 −

2

u2
+

1

4
B ((u1p2 − u2p1) + (u3p4 − u4p3))

+
1

8
B2
(
u2

1 + u2
2

) (
u2

3 + u2
4

)
+ F (u1u3 − u2u4)

]
ψ = Eψ. (6.2)

Multiplication of the Schrödinger equation by a factor of u2 and the introduction of the
scaled coordinates

u →
√
neff u, H = neff H4, (6.3)

yields the regularized Schrödinger equation for the hydrogen atom in external crossed
fields

Hψ =

[
1

2

(
p2

1 + p2
2 + p2

3 + p2
4

)
+ (α+ ζ (u1u3 − u2u4))

(
u2

1 + u2
2 + u2

3 + u2
4

)
+

1

2
β
(
(u1p2 − u2p1)

(
u2

3 + u2
4

)
+ (u3p4 − u4p3)

(
u2

1 + u2
2

))
1

8
β2
((
u2

1 + u2
2

)2 (
u2

3 + u2
4

)
+
(
u2

1 + u2
2

) (
u2

3 + u2
4

)2)]
ψ (6.4)

= 2neffψ,

with an effective real valued quantum number neff . The eigenvalues of the scaled Hamil-
tonian H in (6.4) for fixed values of α, ζ, β are the discrete effective quantum numbers
neffi, i = 1, 2, 3, . . . , i.e. Hψi = 2neffiψi. The corresponding eigenenergies and the related
field strengths can be obtained by using the definitions

α ≡ −Ein
2
effi, ζ ≡ Fin

3
effi, β ≡ Bin

2
effi, (6.5)

with i = 1, 2, 3, . . ., implied by the scaling (6.3). For fixed values of α, β, ζ scaled
spectra of the Hamiltonian are obtained, i.e. different field strengths Bi and Fi belong to
each energy eigenvalue Ei of the hydrogen atom. The transition to the time-dependent
formulation is in analogy to eq. (5.22) done by the introduction of a fictitious time
parameter τ and the assignment 2neff → i ∂

∂τ
.

Particularly for the computations including only the external magnetic field, oriented
along the z direction, the representation of the regularized Hamiltonian (6.4) in semi-
parabolic coordinates is advantageous

H = −1

2

(
∂2

∂µ2
+

1

µ

∂

∂µ
+

∂2

∂ν2
+

1

ν

∂

∂ν
− l2z

(
1

µ2
+

1

ν2

))
(6.6)

+

(
α+ ζµν cos (ϕ) +

β

2
lz +

β2

8
µ2ν2

)(
µ2 + ν2

)
. (6.7)
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6.2. Variational GWP dynamics in the diamagnetic hydrogen atom

In the absence of the electric field ζ = 0 the magnetic quantum number m is conserved.
Omitting the paramagnetic contribution the substitution ψ → ψ/

√
µν yields

H = −1

2

(
∂2

∂µ2
+

∂2

∂ν2

)
+
m2 − 1

4

2

(
1

µ2
+

1

ν2

)
+ α

(
µ2 + ν2

)
+

1

8
β2
(
µ2ν2(µ2 + ν2)

)
.

(6.8)
For the unphysical choice |m| = 1/2 the Hamiltonian describes the 2D H atom used
in section 4.3 as a model system when the semiparabolic coordinates are extended to
negative values and can be interpreted as Cartesian coordinates. We now apply the
TDVP to the physical 3D H atom in external fields.

6.2. Variational GWP dynamics in the diamagnetic
hydrogen atom

The rotational symmetry of the H atom in a homogeneous external magnetic field yields
conservation of the lz component of the angular momentum. The basis states (5.61)
with definite m account for the cylindrical symmetry of the system. In this chapter the
time evolution of wave functions ψm(x) with magnetic quantum number m expanded
in the wave packets (5.61) according to eq. (5.69) is investigated. In contrast to the
dynamics of the basis states (5.61) in the hydrogen atom without external fields discussed
in subsection 5.3.2, the basis states are no longer exact solutions of the Schrödinger
equation when external fields are applied. The reason is that external fields introduce
terms of order higher than harmonic into the Hamiltonian (6.4). The evolution of the
basis states is obtained by the TDVP. The Hamiltonian determines the evolution of the
system when setting the electric field strength ζ = 0. The paramagnetic term βlz = βm
is not accounted for in this section since it only presents a constant energy shift due to the
conservation of lz that will be not considered here. The trial function is a superposition
of N wave packets according to eq. (5.69). It turns out that a sensible choice of the
initial superposition is crucial for the numerical propagation of the wave function. For
an unreasonable choice the numerical problems discussed in chapter 4 occur for few basis
states already and bad unconverged results are obtained. A good choice of the initial
wave function has proven to be the expansion of the Gaussian wave packet in parabolic
coordinates (5.75) discussed in subsection 5.3.2 for the field-free H atom. The variational
equations of motion are set up by evaluating eq. (2.22). The evaluation of the ket-vector
requires the knowledge of the action of the time derivative and the Laplace operator on
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6. Wave packet dynamics in the hydrogen atom in external fields

the trial function (5.62) and we obtain(
i
∂

∂τ
− T

)
gm(yk,x) =

[
−γ̇k + 2i

(
ak

µ + ak
ν

)
(1 + |m|) +

(−ȧk
µ − 2(ak

µ)2)µ2 + (−ȧk
ν − 2(ak

ν)
2)ν2

]
gm(yk,x)

≡
[
vk

0 +
1

2

(
V k

µ µ
2 + V k

ν ν
2
)]
gm(yk,x), (6.9)

for k = 1, . . . , N . The last row of eq. (6.9) defines the coefficients Vµ, Vν , v0 as functions
of the parameters aµ, aν , γ and their time derivatives ȧµ, ȧν , γ̇. Solving for the time
derivatives yields the equations of motion

ȧk
µ = −2(ak

µ)2 − 1

2
V k

µ , (6.10a)

ȧk
ν = −2(ak

ν)
2 − 1

2
V k

ν , (6.10b)

γ̇k = 2i
(
ak

µ + ak
ν

)
(1 + |m|)− vk

0 , (6.10c)

with k = 1, . . . , N . Formally eqs. (6.10) are exactly the same as in eqs. (5.63). However,
in the presence of anharmonic potentials the coefficients V k

µ , V k
ν and vk

0 are not simply
given as the coefficients of the harmonic potential, c.f. V k

µ = 1, V k
ν = 1 and vk

0 = 0 as in
eq. (5.63), but become time-dependent and must be determined from a system of linear
equations, in analogy to eq. (3.28).

The starting point for setting up the equations of motion, i.e. to determine the coeffi-
cients V k

µ , V
k
ν , v

k
0 , k = 1, . . . , N is eq. (2.22). The ingredients of the ket-vector have been

discussed above, the bra-vector of eq. (2.22) requires the knowledge of the derivatives of
the trial function (5.61) with respect to the variational parameters yk = (ak

µ, a
k
ν , γ

k), k =
1, . . . , N which read

∂gm(yk,x)

∂γk
= igm(yk,x),

∂gm(yk,x)

∂ak
µ

= iµ2gm(yk,x),
∂gm(yk,x)

∂ak
ν

= iν2gm(yk,x).

They lead to the resulting matrix equation

N∑
k=1

(
〈gl

m|gk
m〉vk

0 +
1

2
〈gl

m|µ2|gk
m〉V k

µ +
1

2
〈gl

m|ν2|gk
m〉V k

ν

)
=

N∑
k=1

〈gl
m|V (µ, ν)|gk

m〉

N∑
k=1

(
〈gl

m|µ2|gk
m〉vk

0 +
1

2
〈gl

m|µ4|gk
m〉V k

µ +
1

2
〈gl

m|µ2ν2|gk
m〉V k

ν

)
=

N∑
k=1

〈gl
m|µ2V (µ, ν)|gk

m〉

N∑
k=1

(
〈gl

m|ν2|gk
m〉vk

0 +
1

2
〈gl

m|µ2ν2|gk
m〉V k

µ +
1

2
〈gl

m|ν4|gk
m〉V k

ν

)
=

N∑
k=1

〈gl
m|ν2V (µ, ν)|gk

m〉,

(6.11)
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6.2. Variational GWP dynamics in the diamagnetic hydrogen atom

where the index l = 1, . . . , N runs over all basis states and the notation gk
m ≡ gm(yk,x) is

used. The explicit computation of the integrals is presented in appendix A.2. In analogy
to eq. (3.28) the potential V (µ, ν) of the Hamiltonian (6.4) with ζ = 0 and neglecting
the paramagnetic term, enters the right hand side of the matrix equation (6.11).

For better numerical performance we introduce the auxiliary complex quantities bkµ, b
k
ν ,

ckµc
k
ν , k = 1, . . . , N , i.e. the diagonal elements of the matrices Bk, Ck according to ak =

1
2
bk(ck)−1, in analogy to eq. (3.31) and to integrate their equations of motion

ċkµ = bkµ, ḃkµ = −V k
µ c

k
µ, and ċkν = bkν , ḃkν = −V k

ν c
k
ν , (6.12)

rather than integrating eqs. (6.10a) and (6.10b) directly. Thus the number of parameters
per basis state that must be integrated increases from 3 to 5.

In the following a numerical example is presented. The initial wave function is most
conveniently chosen to be a GWP in parabolic coordinates given by (5.75) with center
(ξ0, η0) and mean momentum (pξ0 , pη0). The GWP is expanded in the basis states (5.61)
according to the procedure described in detail subsection 5.3.2, including the Monte
Carlo technique with importance sampling for the computation of the inverse Laplace
transformation. The procedure yields the initial values of the variational parameters
ak

µ, a
k
ν , γ

k, k = 1, . . . , N .
For the excitation of eigenstates at a certain, desired effective quantum number neff the

following selection of the initial values of the GWP, i.e. the center (ξ0, η0) and mean mo-
mentum (pξ0 , pη0) has proven to be useful. Starting from the unscaled field-free classical
energy equation of the hydrogen atom

p2
0

2
− 1

r0
= − 1

2n2
eff

(6.13)

and considering the motion in a plane spanned by the cylindric coordinates ρ, z the
scaled mean momenta pz0 and pρ0 of the GWP for z0 = 0 read

pρ0 =

√
2neff

ρ0

− 1 cosα, (6.14a)

pz0 =

√
2neff

ρ0

− 1 sinα, (6.14b)

which depend on the three input parameters neff , ρ0 ≡ r0 and the angle α which deter-
mines the splitting of the momentum p0 on the perpendicular directions ρ and z, and ρ0

must lie in the range 0 < ρ0 ≤ 2neff . The width of the GWP (5.75) is set to σ =
√
neff .

The transformation of the momenta into parabolic coordinates ξ = r + z and η = r − z
with r0 =

√
ρ2

0 + z2
0 is

pξ0 =
ρ0pρ0 + z0pz0 + r0pz0

2ξ0
, (6.15a)

pη0 =
ρ0pρ0 + z0pz0 − r0pz0

2η0

. (6.15b)
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Figure 6.1.: Gaussian wave function (5.75) with neff = 6.0, ρ0 = 6.0, α = 1.0 (blue
lines) and its expansion in the basis states (5.61) with N = 70 and ε = 0.1
(red lines) according to the Monte Carlo technique developed in subsection
5.3.2. Only minor deviations are visible and the overall agreement is very
good.

In the field-free hydrogen atom thousands of basis functions could be used for the ex-
pansion (5.69) because the propagation was performed analytically for every basis state.
In contrast to the analytic propagation in the field-free H atom where the motion of
each basis state is exact and independent of the other basis states, a coupling of all
basis states implied by the variational procedure must be taken care of when exter-
nal fields are present. The coupling of the basis states is contained in the coefficients
V k

µ , V
k
ν , v

k
0 , k = 1, . . . , N obtained as the solution of the matrix equation (6.11) and the

equations of motion must be solved numerically. When setting β = n2B = 0 in the po-
tential V (µ, ν) entering the right hand side of eq. (6.11) a decoupling of the basis states is
retained. Each basis state has three variational parameters ak

µ, a
k
ν , γ

k, such that N basis
states require the solution of a 3N × 3N matrix equation after every integration step
and the usual numerical problems discussed in detail in section 4.3 occur with increasing
number of basis states. It turns out that constraints on the imaginary parts of the phase
parameters γk

i of the form (4.18) introduced in section 4.3 are in this system also suitable
to prevent the matrix from becoming singular. However, it is not realistic to propagate
several thousands of basis states numerically with the full coupling. Reasonable results
are obtained by far fewer basis states than used in the expansion and propagation of
the GWP (5.75) in the field-free H atom as described in subsection 5.3.2. Reasonable
numbers of basis states are in the range of N=10-100. A numerical example is presented
for the magnetic quantum number m = 0 with the center of the initial packet (5.75)
lying in the plane z0 = 0 with the distance ρ0 = 6.0 to the nucleus, the effective quantum
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6.2. Variational GWP dynamics in the diamagnetic hydrogen atom

number neff = 6.0, and α = 1.0. N = 70 basis states are used for the expansion and
propagation. The damping factor ε introduced in subsection 5.3.2 is set to ε = 0.1

The accuracy of the expansion of the GWP (5.75) in only N = 70 basis states is
surprisingly good as depicted in fig. 6.1. The original wave function (5.75) is drawn
with blue lines, the red lines present its expansion according to eq. (5.69). Only minor
deviations are visible. The time evolution of the wave function is shown in fig. 6.2. The
probability density for six different times τ = 0.4, 0.8, 1.2, 3.0, 5.0, 7.0 is shown in a plane
of constant azimuthal angle ϕ = const. The part ρ < 0 is obtained by reflection of the
positive ρ > 0 part. The influence of the magnetic field β = n2B = 0.2 is becoming
quickly visible since the packet leaves the Kepler ellipse, i.e. the trajectory of a classical
particle with the same initial values in absence of the magnetic field. The parameter
of the harmonic part of the potential in the Hamiltonian (6.7) is set to α = 0.5. Even
for short times τ . 3 the wave function does not any more obey the field-free motion,
for only a bit longer propagation time the state becomes even completely delocalized.
The π periodicity of the evolution of the wave function that is present in the field-free
H atom, is destroyed now.

The auto-correlation function of the propagation can be used to extract spectral in-
formation by Fourier transform or by harmonic inversion of the time signal.

To reduce the density of states the auto-correlation function is reduced to the subspaces
of even and odd parity by taking the symmetrized states ψs

0(ρ, z) = ψ0(ρ, z) +ψ0(ρ,−z)
and the anti-symmetrized states ψa

0(ρ, z) = ψ0(ρ, z) − ψ0(ρ,−z). The auto-correlation
function CP (τ) = 〈ψP

0 (0)|ψP
0 (τ)〉, P = s, a is shown in fig. 6.3(a) for symmetrized states

and in 6.3(b) for the anti-symmetric states. The spectral results for the diamagnetic H
atom, obtained from the time signals are plotted in fig. 6.4. A harmonic inversion has
been employed. The amplitudes of the peaks are determined by the magnitude of the
overlap between the eigenstates, denoted by |neff〉 and in fig. 6.4(a) with the symmetric
initial state ψs

0(τ = 0) and in fig. 6.4(b) with the anti-symmetric state ψa
0(τ = 0), respec-

tively. The amplitudes are plotted by red impulses. The numerically exact eigenvalues
of the diamagnetic hydrogen atom are plotted with blue impulses for comparison. The
agreement of the positions is excellent. The highest amplitudes are located in the region
neff ≈ 6 according to the choice of the input parameters of the initial GWP in eq. (6.14).
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Figure 6.2.: Time evolution of the state (5.75) with neff = 6.0, ρ0 = 6.0, α = 1.0
presented in fig. 6.1. The wave function is plotted for the times τ =
0.4, 0.8, 1.2, 3.0, 5.0, 7.0. Even for very short propagation times τ ≈ 0.4 the
wave packet leaves the classical field-free orbit due to the influence of the
magnetic field. Quickly a complete delocalization of the quantum state sets
in.
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Figure 6.3.: Real part of the auto-correlation function CP (τ) = 〈ψP
0 (0)|ψP

0 (τ)〉 for the
GWP (5.75) with neff = 6.0, ρ0 = 6.0, α = 1.0. (a) Signal of the states
with even parity, P = s and (b) odd parity, P = a.
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Figure 6.4.: Spectrum extracted from the auto-correlation function CP (τ) = 〈ψP
0 (τ =

0)|ψP
0 (τ)〉 computed from the evolution of the wave function (5.75) plot-

ted in fig. 6.1 (τ = 0) and fig. 6.2 (τ ≥ 0). Eigenvalues of the states of
(a) even parity and (b) odd parity (red lines). The amplitudes are given
by the magnitude of overlap between the initial wave function with the re-
spective eigenstate. For comparison of the positions of the eigenvalues the
numerically exact values obtained from a diagonalization are plotted with
blue lines. The related eigenenergies and the magnetic field strength follow
simply from eq. (6.5).
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6.3. Variational GWP dynamics in the hydrogen atom in crossed fields

6.3. Variational GWP dynamics in the hydrogen atom in
crossed fields

The rotational symmetry that is preserved in the presence of a single external field as
discussed in the previous section 6.2 is broken when a second external field with a differ-
ent orientation is applied. None of the three degrees of freedom can be separated. The
paramagnetic term that contributed only a constant energy shift in the diamagnetic
hydrogen atom must now be taken into account since lz is not conserved and the full
Hamiltonian (6.4) determines the evolution. Still, the restriction (5.5) implied by the
regularization must be fulfilled by physically reasonable wave functions. Thus, the re-
stricted 4D Gaussian wave packets in KS coordinates (5.34) with the 4×4 width matrix
A in equation (5.35) which are exact solutions of the field-free hydrogen atom are consid-
ered here as the trial functions. For sufficiently large variational freedom it is necessary
to take a superposition of restricted GWP of the form (5.48). In the numerical examples
below, a 3D Gaussian wave packet (5.54) is expanded and propagated in the restricted
GWPs. The time evolution of the restricted GWPs is determined by the TDVP and is
integrated numerically in contrast to the field-free H atom discussed in subsection 5.3.1.
Formally the equations of motion for the variational parameters keep their form (5.39)
for each restricted GWP in the superposition. Due to the potential terms of third or
higher order introduced by the external fields (6.4) the coefficients vk

0 , V
k
2 that are sim-

ply obtained by comparison with the harmonic underlying potential (vk
0 = 0, V k

2 = 1) in
subsection 5.3.1 are time-dependent now and are obtained as described by the TDVP.
The motion of the linear combination of the restricted GWPs is coupled through the
coefficients vk

0 , V
k
2 . Since the symmetry of the matrices Ak (5.35) is also present in the

matrix (Ak)2, the symmetry carries over to the 4 × 4 complex symmetric matrices V k
2

due to their definition (3.8). Therefore, they have only four independent coefficients
V k

µ , V
k
ν , V

k
x , V

k
y , in the notation of eq. (5.35). The set of linear equations, c.f. (3.28) for

the computation of the coefficients v0, V2 requires the derivatives of the restricted GWPs
with respect to their variational parameters Ak, γk. The derivatives of the GWPs with
respect to their parameters (c.f. (3.11)) now read

∂g(yk,x)

∂γk
= ig(yk,x),

∂g(yk,x)

∂ak
µ

= i(u2
1 + u2

2)g(y
k,x),

∂g(yk,x)

∂ak
ν

= i(u2
3 + u2

4)g(y
k,x),

∂g(yk,x)

∂ak
x

= i2(u1u3 − u2u4)g(y
k,x),

∂g(yk,x)

∂ak
y

= i2(u1u4 − u2u3)g(y
k,x). (6.16)
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6. Wave packet dynamics in the hydrogen atom in external fields

The resulting set of linear equations reads

N∑
k=1

(
I lk
11v

k
0 + I lk

12

1

2
V k

µ + I lk
13

1

2
V k

ν + I lk
14V

k
x + I lk

15V
k
y

)
=

N∑
k=1

I lk
v1

N∑
k=1

(
I lk
12v

k
0 + I lk

22

1

2
V k

µ + I lk
23

1

2
V k

ν + I lk
24V

k
x + I lk

25V
k
y

)
=

N∑
k=1

I lk
v2

N∑
k=1

(
I lk
13v

k
0 + I lk

23

1

2
V k

µ + I lk
33

1

2
V k

ν + I lk
34V

k
x + I lk

35V
k
y

)
=

N∑
k=1

I lk
v3

N∑
k=1

(
I lk
14v

k
0 + I lk

24

1

2
V k

µ + I lk
34

1

2
V k

ν + I lk
44V

k
x + I lk

45V
k
y

)
=

N∑
k=1

I lk
v4

N∑
k=1

(
I lk
15v

k
0 + I lk

25

1

2
V k

µ + I lk
35

1

2
V k

ν + I lk
45V

k
x + I lk

55V
k
y

)
=

N∑
k=1

I lk
v5, (6.17)

with l = 1, . . . , N . The integrals are listed in appendix A.3. The matrix K associated
with the set of linear equations (6.17) is Hermitean as shown in eq. (2.11) and the
integrals have the properties I lk

ij = (Ikl
ij )∗ and I lk

ij = I lk
ji . The potential enters the right

hand side. As mentioned, the equations of motion have the familiar form (5.39), i.e.

Ȧk = −2(Ak)2 − 1

2
V k

2 (6.18a)

γ̇k = −vk
0 + itrAk, (6.18b)

with k = 1, . . . , N . As usual it is recommended to make the substitutionAk = 1
2
Bk(Ck)−1,

c.f. eq. (3.31) and to integrate the eq. (3.32) rather than integrating eq. (6.18a) directly.
As mentioned in chapter 3 these matrices Bk, Ck are no more complex symmetric. In
the 4D KS coordinates the introduction of the Bk, Ck matrices would lead to an increase
of the number of parameters that have to be integrated from four complex parameters
in the width matrix Ak per GWP to a number of 32 complex parameters per GWP in
the two matrices Bk, Ck. However, the special symmetry of the matrices Ak (5.35) can
be exploited to halve the number of parameters from 32 to 16 in the matrices Bk, Ck.
A further reduction of the parameters from 16 to 12 is possible but it turns out that the
resulting equations of motion are numerically unstable. Details concerning the reduction
from 32 to 16 parameters are explained in appendix B.

In order to leave the Cartesian form of the Laplace operator in KS coordinates un-
changed, the paramagnetic term is incorporated in the potential of the Hamiltonian (6.4)
and enters the matrix equation (6.17) on the right hand side vector.

Two numerical examples are presented for the propagation of the GWP (5.54) with
the same width σ = 3.5, the sasme initial position x0 = (6, 0, 0) and the two different
initial mean momenta p0 = (0,±1/

√
2, 1/

√
2), i.e. two initial GWPs are propagated, one
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6.3. Variational GWP dynamics in the hydrogen atom in crossed fields

with the positive py0 component and one with the negative. The GWPs start running
in opposite directions around the z-axis. The parameters of the Hamiltonian (6.4) are
α = 0.5, β = 0.05, ζ = 0.01. The damping constant of the restricted GWPs is set to
ε = 0.15. N = 41 and N = 31 basis states are employed, respectively. For a better
numerical performance constraints on the imaginary parts of the phase parameters γk

of the form (4.18) introduced in section 4.3 with γmin = −4.0 are applied. To reduce
the number of frequencies in the time signal the states of odd and even parity are
investigated separately. This is achieved by the projection of the propagates wave packet
into the subspaces ψs

x0p0
(x, y, z) = ψx0p0(x, y, z) + ψx0p0(x, y,−z) and ψa

x0p0
(x, y, z) =

ψx0p0(x, y, z) − ψx0p0(x, y,−z). The spectra obtained from Fourier transforming the
auto-correlation functions CP (τ) =

〈
ψP

x0p0
(0)|ψP

x0p0
(τ)
〉
, P = s, a associated with the

two propagated wave functions are shown in fig. 6.5. The green line is the result of
the propagation with the positive mean momentum component py0 = 1/

√
2, the red

line follows from the propagation of the GWP (5.54) with py0 = −1/
√

2. Fig. 6.5(a)
shows the results for the symmetrized states with even parity and fig. 6.5(b) presents
the results for the states with odd parity. The eigenvalues obtained from numerically
exact computations are shown by the blue impulses. Comparison shows good agreement
between the exact results and the results obtained by the wave packet propagation. In the
perturbative regime of the chosen field strengths the paramagnetic term is dominant as
compared to the diamagnetic contribution. The direction of the initial mean momentum
of the two examples, i.e. clockwise or anticlockwise around the z-axis, determines the
sign of the angular momentum quantum number m, such that the lower and the higher
levels in the spectrum of fig. 6.5 within one multiplet are excited.
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Figure 6.5.: Spectra obtained from the propagation of two different GWPs of the form
(5.54) with x0 = (6, 0, 0), p0 = (0,±1/

√
2, 1/

√
2), and σ = 3.5. The

green line is the result of the propagation of the GWP with the positive
y-component of the mean momentum py0 = 1/

√
2 the red line is the result

of py0 = −1/
√

2. (a) Projection to states with even parity and (b) states
with odd parity. The eigenvalues are extracted from the auto-correlation
function by Fourier transformation. The positions of the eigenvalues of the
effective quantum number neff agree very good with numerically exact com-
putations (blue impulses). The parameters of the Hamiltonian (6.4) are
α = 0.5, β = 0.05, ζ = 0.01. The related eigenenergies and the field
strengths follow simply from eq. (6.5).
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7. Wave packet dynamics of
Bose-Einstein condensates with
attractive 1/r interaction

In this chapter and in chapter 8 the method of GWP propagation is applied to cold
quantum gases described by the nonlinear Gross-Pitaevskii (GP) equation. Gaussian
type trial functions have been used for time-dependent [33], and especially for time-
independent variational computations [31, 32] on Bose-Einstein condensates. The nonlin-
earity of the Gross-Pitaevskii equation offers a variety of different qualitative dynamical
behavior, which is not known from the linear Schrödinger equation, like bifurcations and
collapsing wave functions. Additionally to the standard short-range contact interaction
term contained in the GP equation long-range particle interactions may occur in cold
quantum gases. Of particular interest are the properties of degenerate quantum gases
in which the relative strengths of long- and short-range interactions can be continuously
adjusted by tuning the contact interaction via a Feshbach resonance [34, 35].

The method of GWP propagation according to the TDVP is applied to two different
kinds of long-range interactions. The isotropic, attractive 1/r long-range interaction
in a Bose-Einstein condensate (BEC) [31] is treated in this chapter. In chapter 8 the
dynamics of a BEC with the anisotropic magnetic dipole-dipole interaction [66–70] is
investigated.

Bose-Einstein condensation of neutral atoms with electromagnetically induced attrac-
tive 1/r interaction has been proposed by O’Dell et al. [71]. “Monopolar” quantum gases
could be realized by a combination of 6 appropriately arranged “triads” of intense off-
resonant laser beams. In that arrangement, the 1/r3 interactions of the retarded dipole-
dipole interaction of neutral atoms in the presence of intense electromagnetic radiation
are averaged out in the near-zone limit, while the weaker 1/r interaction is retained. An
outstanding feature of this type of long-range interaction is that for attractive contact
interaction stable Bose-Einstein condensates are predicted that are self-bound (without
an additional trap). Collapse of the self-bound condensates sets in below some critical
value of the scattering length.

It was recently shown [32] that these critical values in fact correspond to bifurcation
points where two solutions of the Gross-Pitaevskii disappear: one is the true ground
state, and the other a collectively excited state. It was also demonstrated [72] that at the
bifurcation the two stationary solutions exhibit the typical structure known from stud-
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7. Wave packet dynamics of Bose-Einstein condensates with attractive 1/r interaction

ies of exceptional points [73–77] in open quantum systems described by non-Hermitean
Hamiltonians. At the exceptional points both the energies and the corresponding wave
functions are identical, a situation which is forbidden for bound states of the linear
Schrödinger equation (which must be orthogonal) but is possible here because of the
nonlinearity of the Gross-Pitaevskii equation.

Using a complex continuation of the Gross-Pitaevskii equation the existence of com-
plex eigenstates at (real) negative scattering lengths below the bifurcation point has also
been revealed [72]. The physical interpretation of these states is the collapse (or explo-
sion) of the condensate with a decay rate given by the imaginary part of the complex
eigenvalues of the chemical potential.

It is the purpose of this chapter to analyze self-bound spherically symmetric Bose-
Einstein condensates with attractive 1/r interaction in the vicinity of the bifurcation
points from the point of view of nonlinear dynamics, and to investigate the time evolu-
tion of arbitrary condensate wave functions. We do this by solving the time-dependent
Gross-Pitaevskii equation both by means of a variational approach with time-dependent
Gaussian wave packets and by exact numerical computations using the split-operator
method. We will show that of the two stationary solutions created in a tangent bifur-
cation one is dynamically stable and the other unstable, corresponding to elliptic and
hyperbolic fixed points, respectively. The stable state is surrounded by solutions pe-
riodically oscillating in time, whereas wave functions in the unstable region undergo a
collapse within finite time. Below the tangent bifurcation no stationary solutions exist,
i.e., the condensate is always unstable and collapsing.

The special appeal of investigations of the properties of spherically symmetric self-
trapped Bose-Einstein condensates with attractive 1/r interaction lies in the fact that the
extremization of the variational mean-field energy can be carried out fully analytically.
The reason is that in absence of a trap the extremization conditions for the mean-field
energy become quadratic equations, while with a trap potential the equations become
at least polynomials of order 5, caused by the combination of the trap and contact
interaction terms, regardless of whether or not a long-range interaction is present, and
of its type. Therefore generic properties of Bose-Einstein condensates can be elucidated
in a very simple and transparent way, and later be checked in numerical calculations and
in more complex systems such as dipolar Bose-Einstein condensates in chapter 8.

The evolution of a wave function is determined by the time-dependent extended Gross-
Pitaevskii equation for self-trapped Bose-Einstein condensates with attractive 1/r inter-
action without external trap potential, which reads

i
d

dt
ψ(r, t) =

(
−∆ + 8πNa |ψ(r, t)|2 − 2N

∫
d3r′

|ψ(r′, t)|2

|r − r′|

)
ψ(r, t) , (7.1)

where the natural“atomic”units introduced in Ref. [32] were used. Lengths are measured
in units of a “Bohr radius” au = ~2/(mu), energies in units of a “Rydberg energy”
Eu = ~2/(2ma2

u), and times in units of tu = ~/Eu, where u determines the strength of
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7.1. TDVP for BECs with attractive 1/r interaction

the atom-atom interaction [31], and m is the mass of one boson. The number of bosons
is N and a is the scattering length.

7.1. TDVP for BECs with attractive 1/r interaction

The TDVP is applied to solving the time-dependent Gross-Pitaevskii equation 7.1. Ex-
ploiting the scaling properties presented in ref. [32] and introducing the scaled variables

(r̃, ã, t̃, ψ̃) = (Nr,N2a,N2t, N−3/2ψ) , (7.2)

the system is transformed to

i
d

dt̃
ψ̃(r̃, t̃) = H̃ψ̃(r̃, t̃) =

[
−∆r̃ + Ṽc + Ṽu

]
ψ̃(r̃, t̃) , (7.3)

where the potentials

Ṽc = 8πã|ψ̃(r̃, t̃)|2 , (7.4a)

Ṽu = −2

∫
d3r̃′

|ψ̃(r̃′, t̃)|2

|r̃ − r̃′|
(7.4b)

depend on the coordinates and the wave function, i.e., H̃ is a nonlinear operator. The
scaling reveals that the system has only one external parameter, viz. ã = N2a/au [32].
If not stated otherwise, we use the scaled variables throughout the rest of this chapter
and omit the tilde in what follows.

In time-independent calculations for condensates with 1/r interaction Gaussian wave
functions have been used as an ansatz for the two stationary solutions created in the
tangent bifurcation [31, 32]. To apply the TDVP to the Gross-Pitaevskii equation (7.3)
we choose as a test function a radially symmetric Gaussian wave packet

ψ(r, t) = ei(Ar2+γ) = e−(Air
2+γi)+i(Arr2+γr) (7.5)

with the time-dependent variational parameters

z(t) = {A(t), γ(t)} = {Ar(t) + iAi(t), γr(t) + iγi(t)}. (7.6)

A similar time-dependent Gaussian trial function has been applied in studies of the
dynamics of the Gross-Pitaevskii equation in an external trap without 1/r interaction
[33]. In contrast to the previous chapters a single GWP is employed here as the trial
function and proves to be sufficient to obtain qualitatively correct results. In the context
of Cartesian coordinates the complex width matrix Ā of the GWP is a multiple of the
identity matrix Ā = A13, such that the trace of the matrix Ā is 3A. The equations of
motion read

Ȧ = −4A2 − 1

2
V2 , (7.7a)

γ̇ = 6iA− v0 . (7.7b)
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7. Wave packet dynamics of Bose-Einstein condensates with attractive 1/r interaction

Note that eqs. (7.7) slightly differ from eqs. (6.18) because the “Rydberg” like energy
unit introduced above removes the factor 1/2 in the kinetic energy operator in the GP
equation (7.1). According to the TDVP, the coefficients v0 and V2 are obtained as the
solution of a matrix equation, c.f. (3.28). To set up the linear equations the derivatives
of the trial function (7.5) with respect to γ and A are required in analogy to eq. (3.11).
They read

∂ψ(r, t)

∂γ
= iψ(r, t),

∂ψ(r, t)

∂A
= ir2ψ(r, t), (7.8)

and thus v0 and V2 are the solution of the two linear equations

〈ψ|ψ〉v0 +
1

2
〈ψ|r2|ψ〉V2 = 〈ψ|Vc + Vu|ψ〉 , (7.9a)

〈ψ|r2|ψ〉v0 +
1

2
〈ψ|r4|ψ〉V2 = 〈ψ|r2(Vc + Vu)|ψ〉 . (7.9b)

The integrals are calculated in appendix A.4. Inserting v0 and V2 in (7.7a) and (7.7b)
yields the differential equations

Ȧ = −4A2 + π2
√

2e−2γi

(
aAi −

1

6

)
, (7.10a)

γ̇ = 6iA+
πe−2γi

2
√

2Ai

(5− 14aAi) . (7.10b)

The imaginary part of eq. (7.10b) can be integrated analytically,

γi(t) = −3

4
ln

2Ai(t)

π
, (7.11)

and guarantees the normalization condition ||ψ||2 = 1. The final form of the equations
of motion in real number representation is given by

Ȧr = −4(A2
r − A2

i ) +
8√
π
A

3/2
i

(
aAi −

1

6

)
, (7.12a)

Ȧi = −8ArAi , (7.12b)

γ̇r = −6Ai +
1√
π

√
Ai (5− 14aAi) , (7.12c)

which are solved under the initial conditions Ar(0) = γr(0) = 0, Ai(0) > 0 for an initially
real valued Gaussian wave packet.

7.2. Linear stability of the bifurcating states

In this section we study the stability of the two stationary eigenstates that are born in
the tangent bifurcations. The analysis is adopted from Refs. [78, 79], where variational
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Figure 7.1.: Chemical potentials of the ground state (ε+) and the nodeless excited state
(ε−) in the variational calculation. They emerge in a tangent bifurcation
at a critical value of the scaled scattering length acr = −3π/8 = −1.1780
[32, 72, 79].

and numerical results are presented. Here we focus on the variational results of the
stability analysis.

In the time-dependent variational approach, the two stationary states of the Gross-
Pitaevskii equation (7.3) appear as the time-independent solutions (fixed points) of the
equations of motion (7.12). Requiring Ȧi = 0 and Ȧr = 0 immediately leads to

Âr = 0 , (7.13a)

Âi =
1

6a
+

π

8a2

(
1±

√
1 +

8a

3π

)
. (7.13b)

The vanishing of the real part of Â implies that the state indeed is a stationary Gaussian.
The scaled chemical potentials ε are given by the negative time derivative −γ̇r of the
phase of the wave function in eq. (7.12c)

ε
(var)
± = −γ̇r = − 4

9π

5± 4
√

1 + 8a
3π(

1±
√

1 + 8a
3π

)2 . (7.14)

The chemical potentials of the two solutions (7.14) are drawn in fig. 7.1. The tangent
bifurcation behavior of the chemical potential at the critical scattering length acr =
−3π/8 = −1.1780 is clearly visible. The branch with the lower chemical potential in fig.
7.1 turns out to have higher mean-field energy than the other branch [32]. Therefore
the plus sign refers to the ground state, and the minus sign to the collectively excited
state. The results obtained here via the fixed points of the time-dependent equations of
motion for the variational parameters fully agree with the results derived in Refs. [31, 32]
applying a time-independent variational approach to extremize the mean-field energy,
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and which were used to compare with numerically exact solutions of the stationary
extended Gross-Pitaevskii equation in Refs. [32, 72].

The linearization of the equations of motion (7.12) around the stationary solutions
Âr, Âi are given by

δȦr± = ± 4

9π

√
1 + 8a

3π(√
1 + 8a

3π
± 1
)2 δAi± , (7.15a)

δȦi± = − 16

9π

1(√
1 + 8a

3π
± 1
)2 δAr± . (7.15b)

The eigenmodes with the eigenvalues λ of eqs. (7.15) are calculated with the usual ansatz

δAr,i(t) = δA
(0)
r,i e

λt. For the stationary ground state we find the two eigenvalues

λ+ = ± 8i

9π

4

√
1 + 8a

3π(√
1 + 8a

3π
+ 1
)2 , (7.16)

which are always imaginary for a > −3π/8 (i.e., above the bifurcation point). They
describe an elliptic fixed point, which is stable. The two eigenvalues of the excited
stationary state,

λ− = ± 8

9π

4

√
1 + 8a

3π(√
1 + 8a

3π
− 1
)2 , (7.17)

are always real for negative scattering lengths a > −3π/8, and one eigenvalue is positive.
Hence, the eigenstate is unstable and belongs to a hyperbolic fixed point.

7.3. Dynamics of the condensate

In this section we investigate the time evolution of the BEC. We do this first by the
variational approach and then by exact numerical calculations. The variational calcu-
lations will reveal the different types of dynamics in the vicinity of the elliptic and the
hyperbolic fixed points, viz. oscillatory or collapsing solutions. Furthermore, the collapse
of the condensate for a < acr can be followed as a function of time. The numerically
exact approach will confirm these findings and, in addition, exhibit a larger variety of
qualitatively different dynamical behavior of the condensate.

7.3.1. Variational approach

We solve the two ordinary differential equations (7.12a) and (7.12b) for various scaled
scattering lengths a above and below the critical value acr = −3π/8 = −1.1780. Phase
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portraits of the dynamics can be obtained by plotting the imaginary part as a function
of the real part of the time-dependent trajectories A(t) = Ar(t) + iAi(t). The phase
portraits of trajectories with different initial conditions are shown in fig. 7.2 for three
values of the scaled scattering length, one above the bifurcation point (a = −1, fig.
7.2(a)), one near the bifurcation point (a = −1.18, fig. 7.2(b)), and one below the
bifurcation point (a = −1.3, fig. 7.2(c)). For a > acr the elliptic and the hyperbolic
fixed points are clearly recognizable in fig. 7.2(a), they correspond to the stationary
eigenstates. The two fixed points coalesce at the critical scattering length acr (see fig.
7.2(b)), and disappear for a < acr (fig. 7.2(c)) implying that stationary eigenstates no
longer exist.

For the physical interpretation of the phase portraits it is useful to note that the width√
〈r2〉(t) of the condensate is related to Ai(t) via

〈r2〉(t) =
〈ψ|r2|ψ〉
〈ψ|ψ〉

=
3

4Ai(t)
. (7.18)

Thus, in the stable region surrounding the elliptic fixed point the width of the condensate
oscillates periodically. This is illustrated in fig. 7.3 for a condensate with scattering
length a = −1 and initial condition Ai(0) = 0.3.

In the unstable regions Ai(t) increases to infinity, which means the collapse of the
condensate. In fig. 7.4(a) the width

√
〈r2〉 is shown for a condensate with scaled scat-

tering length a = −1 and initial condition close to the hyperbolic fixed point, given by
eqs. (7.13a) and (7.13b) at Ar = 0, Ai = 0.3787. The width first stays approximately
constant, as is to be expected in the vicinity of the unstable stationary state, however,
as soon as the decrease of the width becomes noticeable, the complete collapse to zero
width occurs within finite time. This behavior demonstrates the existence of a collapse
induced by the attractive atom-atom interactions. In a realistic experimental situation
further mechanisms, which go beyond the scope of this thesis, have to be taken into
account. In particular, the contraction of the wave function amplifies density-dependent
inelastic collisions which result in a loss of particles [34, 80] and change the time evo-
lution. Note that the calculations presented here assume a constant scaled scattering
length (cf. eq. (7.2)). Of course, for initial conditions close to the hyperbolic fixed point
the evolution of the collapse depends sensitively on the initial deviation from the fixed
point, i.e., the closer the initial conditions approach the hyperbolic fixed point the longer
it takes before the collapse sets in.

At scattering lengths a < acr the square root in eq. (7.13b) becomes imaginary which
means that no fixed points and thus no stationary states can exist. The condensate
collapses for all initial conditions A(0) of the wave function. This is illustrated for a =
−1.3 in fig. 7.4(b) with the initial condition of the “least” unstable non-stationary state,
Ai(0) = 1

6a
+ π

8a2 = 0.10416 (cf. eq. (7.13b)). Contrary to the situation shown in fig. 7.4(a)
the decrease of the condensate width starts immediately without any plateau. Ignoring
a loss of particles we find that the width vanishes after the finite time Tc = 9.2522.

91



7. Wave packet dynamics of Bose-Einstein condensates with attractive 1/r interaction

0.0

0.2

0.4

0.6

     

A
i

(a)

0.0

0.2

0.4

0.6

     

A
i

(b)

0.0

0.2

0.4

0.6

-0.10 -0.05 0.00 0.05 0.10

A
i

Ar

(c)

Figure 7.2.: Phase portraits of the dynamics obtained from time-dependent trajectories
of the complex function A(t). (a) For a = −1 the two stationary solutions
appear as fixed points. (b) They coalesce for a = −1.18. (c) For a = −1.3,
below the bifurcation point, there are no stationary solutions.
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Figure 7.3.: Periodically oscillating condensate for the scattering length a = −1 and the
initial condition Ai(0) = 0.3.

The variational approach with complex parameters A(t) and γ(t) in eq. (7.5) ensures
that the mean-field energy

E =
3 (A2

i + A2
r)

Ai

+
2
√
Ai(2aAi − 1)√

π
(7.19)

is conserved. Thus, the phase portraits in fig. 7.2 can be calculated alternatively as
equipotential lines E = const instead of integrating the equations of motion (7.12).

In fact, the equations of motion obtained from the time-dependent variational principle
can be brought into Hamiltonian form if the variational parameters Ar, Ai are replaced
with two other dynamical quantities, of which one is assigned to be the momentum and
the other the coordinate variable. Such adequate canonical variables are [37]

q =
1

2

√
3

Ai

=
√
〈r2〉 , (7.20a)

p = Ar

√
3

Ai

, (7.20b)

and in this set the mean-field energy reads

E = H(q, p) = T + V = p2 +
9

4q2
+

3
√

3a

2
√
πq3

−
√

3√
πq

(7.21)

with the decomposition into a “kinetic” part T depending on the “momentum” p and a
“potential” part V depending only on the “coordinate” q. Note that q has the physical
meaning of the square root of the radius of the condensate, according to equation (7.18).
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Figure 7.4.: Collapse of the unstable eigenstate. (a) Scaled scattering length a = −1 and
initial condition close to the hyperbolic fixed point at Ar = 0, Ai = 0.3787.
The collapse after finite time is clearly visible in the inset, but depends
sensitively on the initial conditions (see text). (b) Collapse of the non-
stationary state at a = −1.3 with initial condition Ai(0) = 1
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8a2 =
0.10416.
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If the mean-field energy (7.21) is identified with a Hamiltonian, it describes the one-
dimensional motion of a particle in the potential V (q) obeying Hamilton’s equations:

q̇ =
∂H

∂p
= 2p , (7.22a)

ṗ = −∂H
∂q

=
9

2q3
+

√
3

π

9a

2q4
−
√

3

π

1

q2
. (7.22b)

Of course the backward substitution Ar = p
2q

, Ai = 3
4q2 together with (7.22a) and

(7.22b) yields the same equations of motion for Ar and Ai as obtained from the TDVP.
Conversely, if the trial wave function (7.5) had been parametrized by q, p, γ, the TDVP
would have yielded their equations of motion (7.22a) and (7.22b).

The “potential” part V (q) of the mean-field energy (7.21) is plotted in fig. 7.5 as
a function of the “position” variable q for different scattering lengths below, at, and
above the critical scattering length acr. It agrees with the mean-field energy plotted in
Ref. [31], calculated using a real-valued spherically symmetric (stationary) Gaussian trial
wave function. In our approach the“kinetic” term p2 in eq. (7.21) appears additionally in
the mean-field energy because of the complex ansatz (7.5). In other words, the full mean-
field energy of Ref. [31] corresponds to our potential part V , in which the condensate
moves like a classical particle.

Above acr the potential possesses two stationary points, a stable one at the minimum
and an unstable one at the maximum. At acr the bifurcation takes place, i.e., the two
extrema coincide and there is only a saddle point of the potential. For a < acr the
potential has no stationary points. For a > acr the motion of the condensate is stable
as long as the mean-field energy lies below the maximum of the peak of the potential
and if it is located close to the local minimum on the right-hand side of the unstable
fixed point. The one-dimensional motion is periodic between two turning points. If the
energy is increased above the energy of the unstable fixed point, only one turning point
remains, and the condensate collapses when q approaches zero.

The phase space portrait of the dynamics in (p, q)-variables is presented in fig. 7.6 for
the scattering length a = −0.8. The equipotential lines which asymptotically approach
the q = 0 axis represent the collapse of the condensate.

7.3.2. Exact time-dependent calculations with the split-operator
method

To verify the validity of the variational approach we now compare the results obtained
variationally with exact time-dependent calculations using the split-operator method.
The split-operator method (c.f. appendix C and ref. [47]) assumes the decomposition of
the Hamiltonian H = T + V , and makes use of the short-time approximation for the
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Figure 7.5.: “Potential” part of the mean-field energy for different scattering lengths.
This potential part of the mean field energy (7.21) agrees with the complete
mean-field energy for stationary states of Ref. [31] (see text). The motion
of the Gaussian wave function is interpreted as the one-dimensional motion
of a classical particle in the potential V (q).

time evolution operator

e−iτ(T+V ) = e−i(τ/2)T e−iτV e−i(τ/2)T +O(τ 3) . (7.23)

The kinetic part of the evolution operator is applied to the wave function in momentum
space, the potential part is applied to the wave function in position space representation.
The method is numerically especially efficient when a fast Fourier transform is used for
the transition from momentum to position space representation and backwards. For
the nonlinear Gross-Pitaevskii equation (7.3) the potential part of the time evolution
operator needs some further investigation in comparison with the linear Schrödinger
equation. Although the scattering term Vc belongs to the nonlinear part of the Gross-
Pitaevskii equation, it can be treated like a conventional potential of a linear Schrödinger
equation and presents no additional difficulty. The 1/r interaction potential Vu however
requires the additional solution of the integral (7.4b) after every time step of integration.
This integral is computed using the convolution theorem, i.e.,

F{Vu(r, t)} = F{1

r
}F{|ψ(r, t)|2} , (7.24)

96



7.3. Dynamics of the condensate

 1

 2

 3

 4

 5

 6

 7

-0.6 -0.2  0.2  0.6

q

p

Figure 7.6.: Phase portrait of the mean-field energy formulated in the canonical variables
q and p given by eqs. (7.20) for scaled scattering length a = −0.8.

where the Fourier transform of 1/r is performed analytically

F{1

r
} =

4π

p2
. (7.25)

Altogether two additional fast Fourier transforms are necessary per time step and we
obtain for the 1/r interaction term

Vu(r, t) = −16

r

∫ ∞

0

dp
sin pr

p2

∫ ∞

0

dr′r′|ψ(r′, t)|2 sin pr′ . (7.26)

The fast Fourier transforms are performed on equidistant grids with 1024 or 2048
points. The numerical convergence is checked by monitoring that the wave function
vanishes at the rmax, pmax borders of the grids, both in position and in momentum
space. Due to the widening of the wave function in some computations the necessary
size of the grid depends on the desired propagation time. A criterion of convergence for
the time step of the split-operator method is that the mean-field energy is a constant of
motion. In particular for the computations in which the wave function is very close to the
hyperbolic fixed point the time step must be chosen small for convergence. Specifically,
for the computations in the vicinity of the hyperbolic fixed point we use ∆t = 0.0001
whereas for computations far away from the unstable stationary state a time step of
∆t = 0.01 is sufficient.
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In the following, the dynamics of the condensate is investigated for regions initially
close to the two stationary states. In particular, we present the evolution of those initial
states which are obtained by deforming the stable and the unstable stationary state by

ψ → ψ · f, r → r/f 2/3 (7.27)

with a stretching factor f , i.e., for f = 1 the stable and the unstable stationary state,
respectively, are obtained. This choice of perturbation leaves the norm of the wave
function unchanged.

We start with the investigation of the dynamics of wave functions close to the unstable
stationary state. In fig. 7.7(a) the square root of the width (7.18) of the condensate is
plotted as a function of time. The evolution presented in fig. 7.7(a) is computed at the
scaled negative scattering length a = −0.85 with a deformation factor f = 1.001. The
wave function itself is plotted in fig. 7.7(b) as a function of the radial coordinate r at
different times. The initial wave function is given by the solid red line. The condensate
stays nearly stationary at the beginning for times up to t ≈ 4, i.e., the dashed green line
in fig. 7.7(b) representing the wave function at t = 4 nearly coincides with the initial
state, and the width (fig. 7.7(a)) has only slightly decreased from

√
〈r2〉 = 1.48 at t = 0

to
√
〈r2〉 = 1.44 at t = 4.0. With increasing time and the farther away the wave function

has moved from the stationary state, the shrinking of the width of the wave function is
accelerated. As already predicted by the variational computation this leads to a collapse
of the condensate at finite time. Both figs. 7.7(a) and 7.7(b) show that the width of
the condensate tends to zero in position space when the collapse time Tc is approached.
Conversely, in momentum space the wave function becomes arbitrarily wide close to Tc.
Thus, the size of the grid in momentum space is the numerically limiting factor for the
propagation with the split-operator method. Choosing a large grid in momentum space
allows for integrating arbitrarily close to Tc.

According to the variational results there exist periodic solutions in the vicinity of the
unstable stationary state, and, indeed, similar behavior is found in the numerically exact
computations. In fig. 7.8(a) the width of a quasi-periodically oscillating condensate at
a = −1.0 is shown. The associated wave function is plotted in fig. 7.8(b) for different
times. It can be seen that at the times where the root-mean-square extension of the
condensate goes through a maximum, or minimum, there is also a good agreement of
the respective wave functions. This shows that the wave functions indeed oscillate quasi-
periodically. The calculation is started with the wave function of the unstable stationary
state (f = 1). Because of numerical deviations, the solution begins to oscillate for times
larger than t ≈ 25. In contrast to the variational result, the oscillation of the condensate
is not strictly periodic here.

The dynamics of the condensate presented so far does not qualitatively differ from
what is predicted by the variational calculation. In fig. 7.9(a), however, the situation is
encountered where the width increases monotonically with time. Here we have chosen
a deformation of f = 0.99 at the scaled scattering length a = −0.85. For short times
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Figure 7.7.: (a) Width of a slightly perturbed stationary state (a = −0.85, f = 1.001) as
a function of time. (b) Wave functions of the state for selected times marked
by circles in (a). The collapse of the condensate is obvious from both plots.
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there is again a plateau where the width is nearly constant as in fig. 7.8(a). The plateau
is shorter than that in fig. 7.8(a) because the initial wave function of fig. 7.9(b) differs
more from the stationary state than the initial state associated with fig. 7.8(a). For times
t & 65, however, the width increases linearly with time. Obviously, fig. 7.9(b) shows a
broadening of the wave function for times up to t ≈ 20. For longer times the main peak
of the wave function located at the origin does not broaden monotonically with time as
might be concluded from fig. 7.9(a). Indeed, the wave functions at t = 240 and t = 400
seem to be even sharper than the wave function at t = 20 in fig. 7.9(b). This apparent
contradiction is resolved, if the wave functions are plotted on a broader range in position
space and on a logarithmic scale, which is presented in fig. 7.10. Here it is clearly visible
that the wave functions have more than one peak and their width does increase for larger
times. However, the amplitude of the run-away parts is very small compared to the first
maximum at the origin. For obtaining the accurate propagation it is therefore necessary
to choose a large grid in position space to make the wave function vanish on the border,
in particular for long propagation times. The usual method to prevent the wave function
from running to the border of the grid and being reflected there, namely to introduce an
absorbing complex potential, is not applicable for the nonlinear Gross-Pitaevskii system,
in which an absorption of the wave function alters the potential.

In the vicinity of the stable stationary state the condensate exhibits an oscillatory
behavior shown in fig. 7.11(a). The parameter values for this computation are a stretch-
ing of f = 1.01 of the stable stationary state at a = −0.85. The amplitude of the
oscillation is very small compared to the oscillation in fig. 7.8(b) and ranges from about√
〈r2〉 = 3.336 to

√
〈r2〉 = 3.385. This observation is in correspondence with the varia-

tional result in fig. 7.2(a) where small deviations from the stable fixed point lead to small
oscillations around the fixed point along the equipotential lines whereas small deviations
from the unstable fixed point may lead to oscillations with a large amplitude. However,
with increasing distance from the stable fixed point the dynamics is no longer oscillatory,
but, as can be seen in fig. 7.11(b), there is also a gradual broadening of the condensate,
which becomes more pronounced for larger deviations of the initial wave function from
the stable stationary state as is shown in fig. 7.11(b), in which the time evolution of the
width for f = 1.25 is plotted. The scattering length is set to a = −0.85 again. Here, the
oscillatory motion at the beginning changes to a mainly expanding motion with minor
modulations.

In general the exact computations qualitatively verify the variational results. In
anisotropic condensates the variational approach will lead to autonomous Hamiltonian
dynamics with more than one degree of freedom. Therefore in addition to the signatures
discussed in this paper signatures of chaos can appear. The hope is that the variational
predictions are as good as for the BEC with 1/r interaction.
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Figure 7.9.: (a) The width of the condensate, initially in the vicinity of the unstable fixed
point with f = 0.99 and a = −0.85 increases linearly with time for t & 65.
(b) Wave functions of the same state for different times marked by circles in
(a). The wave functions at t = 240 and t = 400 seem to be sharper than the
wave function at t = 20. Note that a larger step size on the grid in position
space than in figs. 7.7 and 7.8 was used. Therefore there is a visible distance
between r = 0 and the first point on the grid.
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Figure 7.10.: Double logarithmic plot of the wave functions presented in fig. 7.9(b). The
long-range tail occurring with increasing propagation times and leading to
a monotonically increasing width in fig. 7.9(a) becomes visible.
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Figure 7.11.: (a) Quasi periodically oscillating condensate at a scaled scattering length
of a = −0.85 and f = 1.01. (b) An initially quasi periodically oscillating
condensate at a = −0.85, f = 1.25 turns into expanding dynamics after
long time.
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8. Dynamics of Bose-Einstein
condensates with dipolar interaction

The Bose-Einstein condensation with dipole-dipole interaction has attracted much atten-
tion in recent years [66–70], and the achievement of Bose-Einstein condensation in a gas
of chromium atoms [36], with a large dipole moment, has opened the way to promising
experiments on dipolar quantum gases [81, 82]. For example, the experimental obser-
vation of the dipolar collapse of a quantum gas has recently been reported by Koch et
al. [35], which sets in when the scattering length of the contact interaction is reduced
below some critical value. At the critical scattering length two stationary states of the
Gross-Pitaevskii equation collide and vanish in a tangent bifurcation when the scattering
length is reduced. One stationary state is the ground state, the other stationary state is
a nodeless, unstable, excited state. In this chapter the dynamics of Bose-Einstein con-
densates with inter-atomic magnetic dipole-dipole interaction is investigated by means
of the time-dependent variational principle applied on a Gaussian trial function. The
ratio of the strengths of the two interactions can be varied by changing the scattering
length of the contact interaction. In experiments this is realized by using a Feshbach
resonance [34]. In chapter 7 the analogy of the TDVP equations of motion for the Gaus-
sian wave packet to classical Hamiltonian equations of motion for a classical particle
has been shown [37]. Due to the spherical symmetry of the self-trapped 1/r interacting
BEC the resulting conservative problem is effectively one-dimensional and the motion
of the quasi-particle representing the Gaussian wave packet is regular. The anisotropy
of the magnetic dipole-dipole interaction breaks the spherical symmetry. For ordered
dipoles the three-dimensional system effectively reduces to a two-dimensional system
with cylindrical symmetry. This symmetry is accounted for in the ansatz of the Gaus-
sian trial function. Effectively, this yields a system of four coupled real valued equations
of motion in accordance to the four-dimensional phase space of a classical system with
two degrees of freedom. Although the system is conservative, for two degrees of freedom
the dynamics can be chaotic. For a system with two degrees of freedom the regularity
of the dynamics is most conveniently investigated by employing Poincaré surfaces of
section. Associated with the regularity of the dynamics of the BEC the question for
bifurcations of periodic orbits arises, i.e. where an infinitesimal change of an external
parameter, leads to different modes of periodical oscillations of the BEC. This point is
currently under investigation [83].
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8. Dynamics of Bose-Einstein condensates with dipolar interaction

The dynamics of the system is described by the Gross Pitaevskii equation

i~
d

dt
ψ(r, t) = Hψ(r, t)

=

[
− ~2

2m
∆r + Vt(r) +N

(
4πa~2

m
|ψ(r, t)|2

+
µ0µ

2

4π

∫
d3r′

1− 3 cos2 θ′

|r− r′|3
|ψ(r′, t)|2

)]
ψ(r, t), (8.1)

with the harmonic, rotationally symmetric trap potential Vt = m
2
(ω2

ρρ
2 + ω2

zz
2). The

scattering length is denoted by a, µ is the magnetic moment of the Bosons, µ0 is the
permeability of the vacuum and N is the number of bosons of mass m. Exploiting the
scaling properties [84, 85]

(r̃, γ̃, t̃, ψ̃, Ẽ) = (N−1r, N2γ,N−2t, N3/2ψ,NE)

leads to the scaled Gross Pitaevskii equation for dipolar gases

i
d

dt̃
ψ̃(r̃, t̃) = H̃ψ̃(r̃, t̃) =

[
−∆r̃ + Ṽt + Ṽc + Ṽd

]
ψ̃(r̃, t̃)

in “atomic” units, where lengths are measured in units of the dipole length ad = µ0µ
2m

/(2π~2), energies are measured in units of Ed = ~2/(2ma2
d), and the time in units of

td = ~/Ed. Explicitly the scaled potentials read

Ṽt = γ̃2
z z̃

2 + γ̃2
ρ ρ̃

2,

Ṽc = 8πa|ψ̃(r̃, t̃)|2,

Ṽd =

∫
d3r̃′

|ψ̃(r̃′, t̃)|2(1− 3 cos2 θ′)

|r̃− r̃′|3
.

The dipolar interaction is given by Ṽd, a rotationally symmetric potential, with the
assumption that all dipoles are oriented along the z-axis. θ′ is the angle between r̃− r̃′

and the z-axis, i.e. the axis of the orientation of the dipoles. In contrast to the self-
trapping of the gravity like interacting BEC an external trapping potential Ṽt is needed
in this case to stabilize the gas. According to the rotational symmetry induced by the
dipole interaction a trapping potential that matches the symmetry is assumed.

In the following, all computations are performed in scaled quantities. Therefore the
tilde is omitted. The short-range contact interaction may be attractive for a < 0 or
repulsive for a > 0. The ratio of the trap strengths in the two directions, i.e. along the
symmetry axis z and along the perpendicular direction ρ, is denoted by λ = γz/γρ. A
value of λ > 1 describes a pancake like BEC while λ < 1 presents a cigar like BEC.
In case of λ > 1 the dipoles are mainly ordered side by side leading to a net repulsive
force such that the BEC is even stable at negative scattering lengths. If the scattering
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8.1. TDVP for the dipolar BEC

length is decreased there is always a critical length when the BEC collapses independent
on the trap geometry. In the cigar like BEC the dipoles are mainly ordered in a row
resulting in a net attractive force yielding a collapse of the BEC at negative scattering
lengths. The stability of dipolar BEC for different trap geometries has been investigated
experimentally [35] and theoretically [85].

8.1. TDVP for the dipolar BEC

In this chapter the dynamics of the dipolar BEC is investigated by applying the TDVP
on a GWP trial function of the form

ψ(z,x) = ei(Aρρ2+Azz2+γ), (8.3)

with the complex, time-dependent variational parameters z = (Aρ, Az, γ) where Aρ and
Az are the width parameters and γ is the phase and normalization parameter. The
symmetry of the GWP is chosen according to the symmetry of the system. The GWP
(8.3) employed here is obtained from eq. (3.1) by setting p = 0 and q = 0. The index
k is not needed in this chapter since only a single GWP trial function is employed. To
use the equations of motion resulting from the TDVP derived in chapter 3 the GWP
(8.3) is interpreted in Cartesian coordinates with the associated diagonal width matrix
A = (Aρ, Aρ, Az) such that xAx = Aρρ

2+Azz
2, and i trA = i(2Aρ+Az). The application

of the Laplace operator in Cartesian coordinates yields eq. (3.5) when setting all terms
containing any p or q to zero and bearing in mind that the kinetic operator of the GP
equation does not contain the common factor of 1/2, due to the introduced Rydberg
like “atomic” energy unit. Similarly the equation for the time derivative of the GWP eq.
(3.6) can be used while again setting all terms containing p,q and their time derivatives
equal to zero. The equations of motion hence read

Ȧρ = −4A2
ρ −

1

2
Vρ, (8.4a)

Ȧz = −4A2
z −

1

2
Vz, (8.4b)

γ̇ = 2i(2Aρ + Az)− v0, (8.4c)
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8. Dynamics of Bose-Einstein condensates with dipolar interaction

or in real number representation

Ȧr
ρ = −4((Ar

ρ)
2 − (Ai

ρ)
2)− 1

2
Vρ, (8.5a)

Ȧi
ρ = −8Ar

ρA
i
ρ, (8.5b)

Ȧr
z = −4((Ar

z)
2 − (Ai

z)
2)− 1

2
Vz, (8.5c)

Ȧi
z = −8Ar

zA
i
z, (8.5d)

γ̇r = −4Ai
ρ − 2Ai

z − v0, (8.5e)

γ̇i = 4Ar
ρ + 2Ar

z, (8.5f)

using the splitting Aρ = Ar
ρ + iAi

ρ and Az = Ar
z + iAi

z and γ = γr + iγi. The equations
derived in chapter 3 may be used while taking into account the symmetry of the matrix
A. Due to the reduced variational freedom eq. (3.11) becomes

∂ψ(z,x)

∂γ
= iψ(z,x),

∂ψ(z,x)

∂Aρ

= iρ2ψ(z,x),

∂ψ(z,x)

∂Az

= iz2ψ(z,x). (8.6)

Therefore the matrix equation (3.28) reduces to a 3 × 3 matrix equation for the real
parameters V2, a diagonal matrix with the elements (Vρ, Vρ, Vz), and v0. The linear
equations read  I00 I20 I02

I20 I40 I22
I02 I22 I04

 v0
1
2
Vρ

1
2
Vz

 =

 IV00

IV20

IV02

 . (8.7)

The integrals

I2n2m =
〈
ψ|ρ2nz2m|ψ

〉
(8.8)

and

IV2n2m =
〈
ψ|ρ2nz2mV (x, y, z)|ψ

〉
are computed and listed in appendix A.5.

The solution of the GP equation is now recast as an ordinary initial value problem
(8.5), solved with the initial values Ai

ρ > 0, Ai
z > 0. We choose real valued inital wave

functions, i.e. Ar
ρ = 0, Ar

z = 0.
The equation of motion (8.5f) for γi can be solved analytically and gives

γi =
1

2
ln

π3/2

2
√

2Ai
ρ

√
Ai

z

,
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8.2. Poincaré surfaces of section

by solving eqs. (8.5b) and (8.5d) for Ar
ρ and Ar

z respectively and inserting the result in
(8.5f) together with the initial condition |ψ(t = 0)|2 = 1. The equation of motion (8.5e)
for the real part of γ is in contrast to the equations of motion for the width parameters
Aρ and Az not a differential equation but a simple integral. Therefore the dynamics of
the BEC is described essentially by the four remaining coupled ODEs (8.5a)-(8.5d) for
Ȧr

ρ, Ȧ
i
ρ, Ȧ

r
z, Ȧ

i
z.

8.2. Poincaré surfaces of section

The regularity of the dynamics of a Hamiltonian system is studied by the investigation
of the phase space. Consider a conservative system with two degrees of freedom. The
associated phase space is four-dimensional. Taking the energy conservation into account,
the motion takes place on a three-dimensional hyperplane. Defining an intersecting 2D
plane, called Poincaré surface of section, by requiring e.g. a momentum component to
vanish, i.e. p = 0, allows for an investigation of the dynamics in the three-dimensional
hyperplane. Each time the Poincaré surface of section is crossed by the trajectory the
values of the variables are recorded. If there is another integral of motion the dynamics is
regular. Then the motion in phase space takes place on 2D tori whose intersections with
the Poincaré surface of section appear as regular one-dimensional structures. If there
is no further constant of motion the dynamics is chaotic and the motion fills the whole
three-dimensional hyperspace. The crossing points of the chaotic trajectory through the
surface of section then fill a two dimensional area. It has been mentioned in chapter 2
that the TDVP leads to a generalized Poissonian dynamics [38] and the variational BEC
evolution described by the four eqs. (8.5a)-(8.5d) can be interpreted as the equations of
motion in a generalized four-dimensional phase space. Taking the conservation of the
mean-field energy into account there are three remaining independent parameters. The
dynamics is best investigated by Poincaré surfaces of section, which are introduced here
by the intersection condition Ar

z = 0. Two independent parameters (e.g. Ai
ρ, A

r
ρ) can

conveniently be plotted, and visualize in an appealing way the dynamical behavior of
the dipolar system. The scaled mean-field energy 〈ψ|H|ψ〉 reads

〈H〉 = 〈Ekin〉+ 〈Vt〉+ 〈Vc〉+ 〈Vd〉

= 2

(
Ai

ρ +
(Ar

ρ)
2

Ai
ρ

)
+ Ai

z +
(Ar

z)
2

Ai
z

+
γ2

ρ

2Ai
ρ

+
γ2

z

4Ai
z

+
4a
√
Ai

zA
i
ρ√

π

+
2
√
Ai

z(A
i
ρ)

2

3(Ai
z − Ai

ρ)
√
π

−3 tan−1
(√

Ai
z

Ai
ρ
− 1
)
Ai

z

Ai
ρ

√
Ai

z

Ai
ρ
− 1

+
2Ai

z

Ai
ρ

+ 1

 . (8.9)

The mean-field energy is a smooth function of the parameters and is plotted in fig. 8.1 for
a better understanding of what follows. The mean-field energy is plotted as a function
of the two imaginary parts of the width parameters Ai

ρ, A
i
z, the real parts Ar

ρ, A
r
z are set
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Figure 8.1.: Sketch of the mean-field functional as a function of the width parameters
Ai

ρ, A
i
z for fixed external parameters. The real parts Ar

ρ, A
r
z are set equal

to zero. The stable stationary state (ground state) of the GP equation is
located at the minimum of the potential close to the origin. The unsta-
ble stationary state is located at the saddle point. For Ai

ρ, A
i
z → ∞, i.e.

vanishing width of the BEC at the collapse, the mean-field energy goes to
−∞.

to zero. The local minimum is located close to the origin and describes the ground state
of the GP equation. In contrast to this stable state there is also an unstable one situated
at the saddle point of the mean-field energy which separates the stable region around
the local minimum where the condensate is stable, from the collapsing region where the
extension of the BEC is shrinking to zero, i.e. Ai

ρ, A
i
z →∞. As long as the energy of the

gas is below the saddle point energy the BEC is not collapsing, above the saddle point
energy the saddle point can be crossed by the trajectories of the parameters such that
a collapse may be expected. It will be shown that surprisingly this is not necessarily
the case, but some stable, non collapsing regions persist even far above the saddle point
energy!

Poincaré surfaces of section are presented for increasing mean-field energies, beginning
slightly above the energy of the stable stationary point Egr = 4.24 × 105. The access
of the region 〈H〉 < Egr is kinematically not allowed. The external parameters for the
following Poincaré surfaces of section are a scattering length of a = 0.1, and the trap
potential is set to 3

√
γzγ2

ρ = 3.4× 104, γz/γρ = 6. Due to the pancake like form of the
BEC imposed by the trap geometry, the dipole interaction is repulsive and the Bose-
Einstein gas stays stable even for slightly negative scattering lengths, i.e. the critical
scattering length is acr = −0.02. For the dynamical investigation, quite a larger value
of the scattering length is chosen a > acr. This allows to access the bound dynamics of
the condensate which does not exist for a ≤ acr.
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Figure 8.2.: Poincaré surface of section at the energy 〈H〉 = 4.50 × 105, a scattering
length a = 0.1 and the trap geometry 3

√
γzγ2

ρ = 3.4 × 104, γz/γρ = 6.
Regular dynamics is exhibited and a central periodic orbit corresponding to
a periodically oscillating BEC is surrounded by quasi periodic orbits, seen
as concentric “ellipses” surrounding the periodic orbit.

The lowest energy selected for a Poincaré surface of section is 〈H〉 = 4.50 × 105

presented in fig. 8.2. Obviously the dynamics is regular. There is a periodic orbit repre-
senting a BEC whose width in ρ and z direction is oscillating periodically in such a way
that the norm stays unaltered with time, i.e. the BEC is pulsating in the two perpen-
dicular directions. The periodic orbit is surrounded by ellipses where quasi periodically
oscillating BECs exist. If the energy is decreased further the size of the kinematically ac-
cessible region plotted in fig 8.2 would further shrink and finally reduce to a single point,
the ground state, when the ground state energy Egr is reached. The regular behavior of
the system is maintained when the energy is increased to 〈H〉 = 6.00× 105, see fig 8.3,
which is still below the saddle point energy Eex = 6.24× 105. However new islands have
been created in a bifurcation which surround the central periodic orbit. In the centers
of the islands there is a new stable periodic orbit representing a new mode of periodi-
cally oscillating BEC while in between the islands there is an unstable non-collapsing,
periodically oscillating BEC. Note that here the term stable or unstable describes the
character of the respective orbit in the sense of Lyapunov. It does not mean the stability
of the BEC concerning a collapse. In an experiment different modes of pulsating BECs
at the same energy should be observed corresponding to the central periodic orbit and
the central orbit of the surrounding island chain, respectively.

When the saddle point is energetically approached the procedure is repeated and new
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Figure 8.3.: Poincaré surface of section at the energy 〈H〉 = 6.00 × 105, a scattering
length a = 0.1 and the trap geometry 3

√
γzγ2

ρ = 3.4 × 104, γz/γρ = 6.
Regular dynamics is exhibited and the central periodic orbit is surrounded
by other stable and unstable periodic orbits forming the island chain.

islands with new periodic orbits appear, see fig 8.4 (a). The energy is close to the saddle
point energy 〈H〉 . Eex and in the region of Ai

ρ ≈ 18000 and Ar
ρ ≈ 0 there occurs chaotic

behavior of the condensate as is best seen in fig. 8.4(b), which shows a magnification of
the chaotic region of fig. 8.4(a). The chaotic region is located below the saddle point
at Ai

ρ = 20408.3. However in between the chaotic region and the saddle point again
there is a small stable island. The chaotic region represents an irregularly fluctuating,
nevertheless non decaying (since 〈H〉 . Eex) BEC. It is astonishing that above the saddle
point energy, as depicted in fig. 8.5 at the energy 〈H〉 = 9.00 × 105, the collapse sets
in for only a certain region, while some other region stays stable and does not collapse,
i.e. it forms islands of stability. The ergodic motion surrounding the stability islands
of course leads to the collapse of the condensate, however the chaotic character could
still be visualized in the Poincaré surface of section since the orbit still traverses the
intersecting plane Ar

z = 0 many times before the trajectory crosses the saddle point and
drives the condensate into collapse. With increasing energy the collapse sets in quicker
and the Poincaré surface of section is hardly ever crossed before the collapse sets in, such
that nearly no structures are visible outside the stability island in fig. 8.6. One single
island survived in fig. 8.6, the others have vanished.

Of course, the size of the island of stability shrinks with increasing energy, but never-
theless it persists to energies even at approximately ten times the saddle point energy,
see fig. 8.6.
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Figure 8.4.: Poincaré surface of section at approximately the saddle point energy 〈H〉 .
Eex. In panel (a) the complete kinematically accessible region is plotted, in
panel (b) a magnification of the chaotic region in the upper part of panel
(a) is visible.
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Figure 8.5.: Poincaré surface of section above the saddle point energy at 〈H〉 = 9.00×105.
There are still some islands of stability surrounded by ergodic, collapsing
regions.

A question concerning the experimental preparation of a BEC in a stable mode above
the saddle point energy is, whether the required energy for excitation lies within the
temperatures which allow for condensation. For an investigation of this point the energy
gap between the ground state and the excited state is supposed to be the minimal energy
necessary for preparation in a “meta” stable state. The example is performed for 52Cr
where the units are ad = 91a0, Ed = 1.7× 10−8eV. The difference of the scaled energies
between the saddle point and the ground state is Eex − Egr = 1

N
(6.24 × 105 − 4.24 ×

105)1.7×10−8eV = N×8.62×10−5 eV
K

∆T which yields ∆T = 39.4K
N2 . If a particle number

of N = 20000 is assumed it follows that the excitation of the gas into “meta” stable
state could in the worst case lead to a thermal energy corresponding to a temperature
of ∼ 10−7K. This temperature might be somewhat high, but in this case the scattering
length should be reduced in order to approach the critical scattering length. Then the
two solutions of the GP equation approach each other and the associated energy gap
reduces.
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Figure 8.6.: Poincaré surface of section high above the saddle point energy at 〈H〉 =
6.00× 106. One stable island has survived. Nearly no structures are visible
outside the island due to the quickly incipient collapse.
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9. Conclusion

The method of wave packet propagation has been introduced thirty years ago but suf-
fers from fundamental problems. The matrix-singularity problem makes the step sizes of
the numerical integration extremely small and the method impracticable. Furthermore,
for the Gaussian wave packets the potential should not deviate too much from a har-
monic potential, i.e. the method is inapplicable for atomic systems close to the Coulomb
singularity. These problems have been addressed and solved in this thesis.

The basis for the successful application of the GWP method to arbitrary quantum
systems are numerically well behaved equations of motion of the Gaussian parameters.
However, there is a discrepancy between the number of GWPs that are necessary for ac-
curate results and the number of Gaussian wave packets that can be propagated without
numerical difficulties, a problem concerning the evolution of non-orthogonal basis func-
tions according to the time-dependent variational principle. A solution to this outstand-
ing problem based on the introduction of constraints on the motion of the parameters
is developed and applied to the propagation of the GWPs. Suitable constraints for the
quantum systems considered in this thesis are formulated and employed. The additional
error introduced to the variational approach by the constraints is found to be negligible.

The regularized hydrogen atom is a promising candidate for the exact propagation of
Gaussian wave packets, provided the restriction is fulfilled. A GWP is shown to satisfy
the restriction, implied by the Kustaanheimo-Stiefel transformation, if the Gaussian
parameters have certain restrictions.

These restricted GWPs are shown to form a complete set of basis functions with
respect to physical wave functions, such that an expansion of arbitrary quantum states
is possible. In the field-free hydrogen atom the propagation of the restricted GWPs is
done analytically. Based on the restricted GWP, a modification of the wave packets to
states with conserved magnetic quantum number, and to states with conserved angular
momentum is presented. When external magnetic and crossed magnetic and electric
fields are applied, the restricted GWPs are no exact solutions of the Schrödinger equation
any more and the evolution is determined by the constrained time-dependent variational
principle. The accuracy of the method is checked by comparison of the results with
numerically exact computations and is proven to be high.

Furthermore, the GWP method is employed to investigate cold gases with long-range
interaction. For the 1/r interacting BEC the results are compared with numerically
exact computations performed by the split-operator method. The qualitative agreement
of the results of both approaches is mainly good, however the numerically exact approach
shows a larger variety of qualitative different behaviors that is not all reproduced by the
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9. Conclusion

GWP method. In particular there is the expanding dynamics of the BEC in the self-
trapped gravity-like BEC, which is not reproduced by the Gaussian trial function. By the
introduction of a convenient parametrization of the GWP classically looking equations
of motion of a conservative one-dimensional Hamiltonian system are obtained.

For the dipolar BEC with rotational symmetry the GWP ansatz leads to a generalized
conservative Hamiltonian dynamics with two degrees of freedom. The dynamics exhibits
regular and chaotic behavior of the condensate, as revealed by the Poincaré surfaces of
section. At energies somewhat above the stationary ground state the dynamics is regular
and exhibits periodic and quasi periodic oscillations of the BEC. With increasing mean-
field energy the dynamics becomes complex and slightly below the saddle point chaos
sets in. Regular and chaotic regions coexist. The regular, non-collapsing regions of the
oscillating BEC persist to energies high above the saddle point.
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Zusammenfassung

Der Aufwand für die numerisch exakte Lösung der zeitabhängigen Schrödingergleichung
nimmt exponentiell mit der Zahl der Freiheitsgrade des Systems zu, und Näherungslö-
sungen werden benötigt. Dazu zählen semiklassische Methoden [1, 2] sowie verschiedene
Methoden, die auf dem zeitabhängigen Variationsverfahren beruhen, wie zum Beispiel die
zeitabhängige Multikonfigurations-Hartree-Methode [3] oder die Methode der Gaußwel-
lenpaketdynamik [4–9]. Die Methode der Gaußwellenpakete besteht darin, daß per Kon-
struktion ein Gaußwellenpaket mit der Zeit Gaußförmig bleibt und die Zeitabhängigkeit
in den Parametern des Pakets, d.h. Breite, Schwerpunkt, mittlerer Impuls und Phase,
steckt. Die Lösung der Schrödingergleichung ist damit auf die Lösung eines gewöhn-
lichen Anfangswertproblems reduziert. Für ein einzelnes Gaußpaket ist diese Näherung
im Allgemeinen nur für kurze Zeiten erfüllt. Das Verfahren wird erheblich verbessert,
wenn eine Superposition von Gaußpaketen verwendet wird und die Aufstellung der Bewe-
gungsgleichungen für die Parameter über das zeitabhängige Variationsprinzip geschieht.
Die Bewegungsgleichungen, die sich aus dem Variationsprinzip ergeben, erfordern nach
jedem Integrationsschritt die Lösung eines linearen Gleichungssystems. Dies bewirkt
eine Kopplung zwischen den Gaußpaketen. Diese Kopplung entfällt für harmonische Po-
tentiale, wo jede Gaußfunktion eine exakte Lösung der Schrödingergleichung darstellt.
Mit zunehmender Zahl von Wellenpaketen kommt es häufiger vor, daß die Matrix des lin-
earen Gleichungssystem von Zeit zu Zeit während der Integration schlecht konditioniert
wird. Dies führt zu erheblichen numerischen Problemen, die sich in einer extrem kleinen
Schrittweite der Integrationsroutine äußern und zu einem Zusammenbruch der Methode
führen können. Die Zahl der für eine akkurate Propagation erforderlichen Wellenpakete
übersteigt dabei im Allgemeinen die Zahl der Wellenpakete, die numerisch problemlos
propagiert werden können [6]. Verschiedene Vorschläge zur Lösung des Problems wurden
gemacht [6, 7, 9, 14–17], jedoch steht eine zufriedenstellende Lösung des Problems noch
aus. Sie ist ein zentraler Gegenstand dieser Arbeit.

Ein weiteres Ziel dieser Arbeit ist es, die Methode der Gaußwellenpropagation auf das
Wasserstoffatom ohne und mit äußeren elektrischen und magnetischen Felder anzuwen-
den. Dies soll in der Weise geschehen, daß der Coulomb-Anteil exakt durch die Wellen-
pakete gelöst wird und Näherungen nur für die äußeren Felder eingeführt werden. Dazu
bietet sich die Regularisierung der Schrödingergleichung des Wasserstoffatoms mit und
ohne äußeren Feldern durch die Einführung der Kustaanheimo-Stiefel-Koordinaten [25,
26] und einer fiktiven Zeit an. Dies transformiert das Coulomb-Potential auf ein har-
monisches isotropes Potential, anharmonische Störungen stammen von den äußeren
Feldern. Gaußpakete in den Kustaanheimo-Stiefel-Koordinaten stellen exakte Lösun-
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gen des regularisierten Wasserstoffatomproblems dar, wenn sie die Zwangsbedingung,
die die Regularisierung impliziert, erfüllen.

Ein weiteres Feld, in dem Gaußwellenpakete Anwendung finden, sind Bose-Einstein
Kondensate. Die Lösung der zeitabhängigen Gross-Pitaevskii-Gleichung, die die Dy-
namik der Kondensate beschreibt, wird durch die Einführung des zeitabhängigen Vari-
ationsprinzips und der Gaußwellenfunktion wesentlich vereinfacht.

Die Arbeit ist wie folgt aufgebaut. In Kapitel 2 werden zwei Varianten zeitab-
hängiger Variationsprinzipien vorgestellt. Abschnitt 2.1 behandelt das Variation-
sprinzip der kleinsten Wirkung. In Analogie zur klassischen Mechanik wird in diesem
Zusammenhang eine Quanten-Lagrangefunktion definiert. Auf dieser Lagrangefunk-
tion wird eine Wirkung definiert als Zeitintegral dieser Lagrangefunktion. Das Vari-
ationsprinzip schreibt nun in Analogie zum Hamiltonschen Prinzip in der klassischen
Mechanik vor, daß die Parameter der Testwellenfunktion auf Bahnen laufen, entlang
welcher die Variation der Wirkung verschwindet. Diese Bahnen ergeben sich als Lö-
sungen der Bewegungsgleichungen, gegeben durch die zugehörigen Euler-Lagrange-Glei-
chungen [20, 37, 41]. Aufgrund dieser Analogie zur klassischen Mechanik lassen sich für
die Testwellenfunktion die Bewegungsgleichungen als verallgemeinerte Poissonklammer
schreiben. Bei geeigneter Wahl der Parametrisierung können die Bewegungsgleichungen
auch in kanonischer Form dargestellt werden, in der der Erwartungswert des Hamilton-
operators als Hamiltonfunktion und die Parameter als Koordinaten und als die dazuge-
hörigen kanonischen Impulse interpretiert werden. Am Beispiel eines Gaußwellenpaketes
wird dies in Referenz [37] vorgeführt. In Abschnitt 2.2 wird das Variationsverfahren
nach McLachalan [42], welches in der Literatur auch als minimum error method [9]
bekannt ist, vorgestellt. Es fordert eine Zeitentwicklung der Wellenfunktion in der Weise,
daß der Fehler in der Schrödingergleichung, d.h. die Norm der Differenz zwischen linker
und rechter Seite der Schrödingergleichung, bei eingesetzter Testwellenfunktion minimal
wird. Für parametrisierte Testfunktionen führt diese Forderung zu einer quadratischen
Minimierungsaufgabe, die sich in ein lineares Gleichungssystem umschreiben läßt. Die
resultierenden Bewegungsgleichungen, die aus dem Prinzip der kleinsten Wirkung und
dem McLachlan-Prinzip hervorgehen, werden verglichen und die notwendige Bedingung
für Übereinstimmung, genannt das “Komplementaritätsprinzip” [37], wird vorgestellt.
Abschnitt 2.3 stellt vor, unter welchen Bedingungen Erwartungswerte quantenmecha-
nischer Erhaltungsgrößen auch bei Propagation der Wellenfunktion χ über das zeitab-
hängige Variationsprinzip nach McLachlan erhalten sind. Es wird gezeigt, daß der Er-
wartungswert eines Operators A, der mit dem Hamiltonoperator vertauscht [A,H] = 0,
dann erhalten ist, wenn der Operator A angewendet auf die Testwellenfunktion χ im
Raum der zulässigen Variationen der Testwellenfunktion liegt, d.h. Aχ ∈ δχ. Die beson-
ders wichtigen Spezialfälle der Energieerhaltung und der Erhaltung der Norm werden
gesondert in Unterabschnitt 2.3.1 behandelt. Es wird gezeigt, daß das Variation-
sprinzip nach McLachlan die Norm erhält, wenn die Testwellenfunktion selbst im Raum
der zulässigen Variationen der Wellenfunktion liegt, d.h. wenn χ ∈ δχ. Das Varia-
tionsprinzip der kleinsten Wirkung erhält dagegen der Erwartungswert des Hamilton-

120



operators. In Abschnitt 2.4 wird eine Fehlerabschätzung für die Variationsverfahren
angegeben. In Kapitel 3 wird das zeitabhängige Variationsverfahren auf eine Super-
position von Gaußwellenpaketen angewendet, und die daraus resultierenden Bewegungs-
gleichungen für die Gaußparameter werden hergeleitet. Die numerische Lösung der Dif-
ferentialgleichungen erfordert die Lösung eines linearen Gleichungssystems nach jedem
Integrationsschritt. Bekanntermaßen treten während der Propagation mit zunehmender
Anzahl von Gaußwellenpaketen numerische Singularitäten der Matrix auf. Leider ist
im Allgemeinen die Zahl der benötigten Wellenpakete, die für eine akkurate Propaga-
tion notwendig sind, höher als die Zahl der Pakete, die numerisch noch unproblema-
tisch propagiert werden können [6]. An diesen Singularitäten bricht die Methode der
Gaußwellenpropagation in der Regel zusammen. Dieser Zusammenbruch kann an der
Unlösbarkeit des singulären Gleichungssystems liegen, oder an der extrem kleinen adap-
tiven Schrittweite der Integrationsroutine, die eine weitere Integration unmöglich macht.
Verschiedene Lösungsmöglichkeiten werden in der Literatur diskutiert. Eine ist die Lö-
sung des singulären Gleichungssystems mittels Singulärwertzerlegung [14]. Ein anderer
Vorschlag beruht auf der Reduktion der Zahl der Gaußwellenpakete an den Singular-
itäten. Beide Vorschläge haben entscheidende Nachteile. Die Singulärwertzerlegung
führt nicht zu einer Verbesserung des numerischen Verhaltens der Differentialgleichun-
gen, d.h. das Verfahren bleibt extrem langsam oder sogar

”
stecken” [12]. Die Ver-

ringerung der Zahl der Gaußwellenpakete hat den Nachteil, daß es nicht immer möglich
ist, die ursprüngliche Wellenfunktion durch den reduzierten Satz von Wellenpaketen hin-
reichend genau darzustellen. Die Lösung des Problems der Matrixsingularitäten wird in
Kapitel 4 vorgestellt. Die Idee ist, geeignete Nebenbedingungen, denen die Gauß Pakete
während der Propagation unterworfen werden, anzuwenden [13]. Insbesondere geht es
hier um nichtholonome Nebenbedingungen in Form von Ungleichungen, die Methode läßt
sich aber auch unmittelbar auf holonome Nebenbedingungen in Form von Gleichungen
anwenden. Zunächst wird das zeitabhängige Variationsprinzip mit Nebenbedingungen
für beliebige parametrisierte Testwellenfunktionen in Abschnitt 4.1 durchgeführt. Die
Nebenbedingungen müssen so gewählt werden, daß die Matrix, deren Elemente aus den
Überlappintegralen der nach ihren Parametern abgeleiteten Testwellenfunktion, besteht,
nicht singulär wird. Solche Nebenbedingungen lassen sich im Allgemeinen als nicht-
lineare Ungleichungen für die Parameter der Testwellenfunktion formulieren. Es wird
gezeigt, daß die Ungleichungen, die die Parameter erfüllen müssen, unter Berücksich-
tigung einer Fallunterscheidung zwischen aktiven und inaktiven Nebenbedingungen zu
linearen Ungleichungen, die die Zeitableitungen der Parameter erfüllen müssen, umfor-
muliert werden können. Weiterhin wird gezeigt, daß diese nichtholonomen Nebenbedin-
gungen für die Zeitableitungen der Parameter auf holonome Nebenbedingungen reduziert
werden können. Dieses Minimierungsproblem lässt sich dann wie gewöhnlich mit Hilfe
von Lagrange-Multiplikatoren lösen, und es ergeben sich die Bewegungsgleichungen bei
aktiven Nebenbedingungen. Die Struktur dieser Bewegungsgleichungen, im Vergleich zu
den Bewegungsgleichungen ohne Nebenbedingungen, bleibt hiervon unberührt, d.h. es
handelt sich weiterhin um implizite Differentialgleichungen erster Ordnung, und es muss
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nach jedem Integrationsschritt ein lineares Gleichungssystem gelöst werden. Das zeitab-
hängige Variationsverfahren mit Nebenbedingungen führt nun dazu, daß sich gemäß der
Fallunterscheidung bei inaktiven Nebenbedingungen die Parameter frei nach den Bewe-
gungsgleichungen, wie sie aus dem Variationsverfahren ohne Nebenbedingungen ergeben,
zeitentwickeln können, solange die Nebenbedingungen nicht verletzt werden. Sobald die
freie Zeitentwicklung der Parameter dazu führen würde, daß die Nebenbedingungen ver-
letzt würden, werden die Nebenbedingungen aktiv, und die modifizierten Bewegungs-
gleichungen, wie sie mit Hilfe der Lagrange-Multiplikatoren berechnet wurden, bestim-
men die weitere Propagation. Sobald die Zeitentwicklung unter Berücksichtigung der
Nebenbedingungen zu Parameterwerten führt, für die eine weitere Propagation mittels
der freien Bewegungsgleichungen möglich ist ohne die Nebenbedingung zu verletzen, wer-
den die Nebenbedingungen wieder inaktiv und die Testwellenfunktion erhält ihre freie
Beweglichkeit zurück. Die Kriterien, wann die Nebenbedingungen abzuschalten sind,
werden angegeben. In Abschnitt 4.2 wird dieses Verfahren auf eine Superposition
von Gaußwellenpaketen angewendet, und die sich ergebenden Bewegungsgleichungen
werden explizit hergeleitet. In Abschnitt 4.3 wird die Methode am Beispiel des dia-
magnetischen, zweidimensionalen Wasserstoffatoms numerisch untersucht. Die Gründe
für Matrixsingularitäten werden anhand eines numerischen Beispiels mit 11 gekoppel-
ten Wellenpaketen gefunden und entsprechend geeignete Nebenbedingungen formuliert.
Es zeigt sich, daß die numerischen Singularitäten durch divergierende große Eigenwerte
verursacht werden, während die kleinsten Eigenwerte der Matrix deutlich von Null ver-
schieden bleiben. Diese

”
riesigen” Eigenwerte resultieren aus einigen überlappenden ex-

trem großen Gauß-Paketen, die sich in der Weise überlagern, daß die Norm der gesamten
Superposition von Gaußwellenpaketen konstant bleibt. Die riesigen Normen einzelner
Wellenpakete stammen von extremen Werten der entsprechenden komplexen Phasen-
parameter γ, die die Amplituden der Gauß-Pakete darstellen. Die Nebenbedingungen
werden daher so gewählt, daß die Amplituden der einzelnen Wellenpakete auf einen
gewissen sinnvollen Bereich beschränkt werden. Anhand von Schaubildern wird gezeigt,
daß in Intervallen in denen die Matrix schlecht konditioniert ist, die adaptive Schrit-
tweite der Integrationsroutine bei Anwendung der Nebenbedingungen um drei bis vier
Grössenordnungen größer ist als die der freien Propagation ohne Nebenbedingungen.

Da die meiste Rechenzeit für die Integration der Intervalle mit schlecht konditionierter
Matrix aufgewendet wird, führt das in diesem Kapitel eingeführte Verfahren der zeitab-
hängigen Variationsrechnung mit Nebenbedingungen insgesamt zu einer Beschleunigung
der Methode um einige Größenordnungen, bzw. die Methode wird überhaupt erst allge-
mein anwendbar. Die Nebenbedingungen stellen einen Eingriff dar, der den Fehler der
Variationsrechnung gegenüber der exakten quantenmechanischen Rechnung vergrößern
könnte. Unter Verwendung der Fehlerabschätzung aus Abschnitt 2.4 wird in Unterab-
schnitt 4.3.1 an dem numerischen Beispiel gezeigt, daß bei sinnvoll gewählten Nebenbe-
dingungen die Fehlerschranke für die Propagation der Wellenpakete mit Nebenbedingun-
gen gegenüber der Propagation ohne Nebenbedingungen während der Dauer der aktiven
Nebenbedingungen praktisch nicht zunimmt und langfristig sogar zu einer Verringerung
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der oberen Fehlerschranke führen kann. Die Leistungsfähigkeit der Methode wird am
Beispiel des diamagnetischen Wasserstoffatoms demonstriert. Die aus der Propagation
folgende Autokorrelationsfunktion C(τ) = 〈χ(0)|χ(t)〉 wird berechnet. Dazu werden 30
Gaußwellenpakete unter Berücksichtigung der Nebenbedingungen propagiert. Das Re-
sultat wird mit numerisch exakten Rechnungen der Split-Operator-Methode verglichen.
Über den gesamten gezeigten Bereich ist nur eine geringe Abweichung zwischen den Au-
tokorrelationsfunktionen festzustellen. Im Vergleich dazu werden diesselben 30 Gauß-
pakete mit fester Breite propagiert. Das Ergebnis ist deutlich schlechter und zeigt ins-
besondere für längere Zeiten deutliche Fehler. Die hohe Genauigkeit kann auch am
Vergleich der Spektren, die aus den Autokorrelationsfunktionen durch harmonische In-
version [48–50] berechnet wurden, abgelesen werden.

Der Erfolg des zeitabhängigen Variationsprinzips hängt entscheidend von der Wahl
der Testwellenfunktion ab. So stellen Gaußpakete für das Wasserstoffatom keine exakte
Lösung dar. Ihre unmittelbare Anwendung auf das eindimensionale H-Atom liefert gute
[22–24] jedoch keinesfalls exakte Ergebnisse. Die Kustaanheimo-Stiefel-Regularisierung
[25, 26] transformiert die Schrödingergleichung des Wasserstoffatoms auf die eines vierdi-
mensionalen isotropen harmonischen Oszillators mit einer Zwangsbedingung. Die Prop-
agation Gaußscher Wellenpakete erscheint besonders im regularisierten H-Atom sinnvoll
und ist hier exakt, wenn die Pakete die Zwangsbedingung erfüllen. Kapitel 5 behan-
delt die exakte Anwendung der Gaußwellen Propagation auf das regularisierte H-Atom.
In Abschnitt 5.1 wird die Regularisierung der singulären Schrödingergleichung des
Wasserstoffatoms dargestellt. Sie beruht im Wesentlichen auf der Einführung der vierdi-
mensionalen Kustaanheimo-Stiefel-Koordinaten [25, 26]. Die Erweiterung des dreidi-
mensionalen physikalischen Raumes auf vier Dimensionen erfordert eine weitere Erhal-
tungsgröße. Diese äußert sich als Zwangsbedingung für physikalisch sinnvolle Wellen-
funktionen. Eine Skalierung der Koordinaten mit der Quadratwurzel der Hauptquanten-
zahl ergibt die Schrödingergleichung als gewöhnliches Eigenwertproblem mit der doppel-
ten Hauptquantenzahl des Wasserstoffatoms als Eigenwert. In Abschnitt 5.1.1 werden
die Eigenzustände des regularisierten H-Atoms angegeben. Die Produktzustände der vier
eindimensionalen harmonischen Oszillatoren erfüllen im Allgemeinen nicht die Zwangs-
bedingungen. Deswegen werden semiparabolische Koordinaten eingeführt, in denen die
Schrödingergleichung und die Zwangsbedingung separieren. Die Eigenzustände ergeben
sich dann als die Produktzustände zweier zweidimensionaler harmonischer Oszillatoren,
deren Drehimpuls gemäß der Zwangsbedingung jeweils gleich ist. Für die Zeitentwick-
lung von Wellenfunktionen wird eine fiktive Zeit [56–60] eingeführt, als zur Hauptquan-
tenzahl konjugierte Variable, und man erhält die zeitabhängige Schrödingergleichung.
Die Wirkung der Zwangsbedingungen auf die vierdimensionalen Gaußwellenfunktionen
wird in Abschnitt 5.2 untersucht. Die Zwangsbedingungen an die Gaußwellenfunktion
ergeben Zwangsbedingungen für die Gaußparameter. Es wird gezeigt, daß die vierdimen-
sionalen Gaußpakete einerseits im Ursprung lokalisiert sein müssen, außerdem muß die
komplex symmetrische 4× 4 Matrix, die die Breite des Wellenpaketes bestimmt und im
Allgemeinen Fall 4×(4+1)/2 = 10 unabhängige Parameter hat, eine spezielle Symmetrie
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mit nur vier unabhängigen Parametern aufweisen, damit die Zwangsbedingung erfüllt ist.
Außerdem wird begründet, daß diese, die Zwangsbedingung erfüllenden Gaußpakete, im
folgenden Basiszustände genannt, eine vollständige Basis bilden. Entscheidend ist, daß
nicht jede Wellenfunktion in den vierdimensionalen Kustaanheimo-Stiefel-Koordinaten
darstellbar sein muss, sondern daß es genügt, wenn jede Wellenfunktion des dreidimen-
sionalen physikalischen Raumes in dieser Basis darstellbar ist. Es wird gezeigt, daß diese
vierdimensionalen Gaußpakete ausgedrückt in den kartesischen physikalischen Koordi-
naten als Spezialfall ebene Wellen im Limes enthalten. Abschnitt 5.3 behandelt die
Entwicklung beliebiger (lokalisierter) Wellenfunktionen nach den Basiszuständen, und
deren exakte Bewegungsgleichungen, wie sie sich aus der regularisierten Schrödinger-
gleichung ergeben, werden analytisch gelöst. Der Abschnitt ist in drei Unterabschnitte
aufgeteilt. Im ersten Unterabschnitt wird der Fall ohne scharfen Drehimpuls mit den
obigen Basiszuständen untersucht. In den beiden folgenden Unterabschnitten werden
die Zustände mit scharfer magnetischer Quantenzahl m und mit scharfem Drehim-
puls l,m gesondert behandelt. Die analytische exakte Propagation der Basiszustände
gemäß der zeitabhängigen regularisierten Schrödingergleichung wird in Unterabschnitt
5.3.1. behandelt. Die exakten Bewegungsgleichungen für die Gaußparameter werden
aufgestellt und analytisch gelöst. Wie oben erwähnt sind die Basiszustände um den
Ursprung lokalisiert. Für die exakte Propagation von beliebigen, insbesondere um einen
vom Ursprung verschiedenen Bereich lokalisierten Wellenfunktionen, ist eine Entwick-
lung dieser Wellenfunktionen nach den Basiszuständen erforderlich. Eine Strategie für
diese Entwicklung basierend auf der Fourierdarstellung der gewünschten Wellenfunktion
wird vorgestellt. Dazu werden die Basiszustände als ebene Wellen im dreidimension-
alen physikalischen Raum aufgefasst, nach denen wie gewohnt entwickelt werden kann,
d.h. die zu entwickelnde Wellenfunktion im Impulsraum gibt die benötigten Amplitu-
den und Phasen der ebenen Wellen an. Rechnungen für die Entwicklung eines drei-
dimensionalen Gaußpaketes lokalisiert um x0,p0 nach den Basiszuständen und dessen
exakte Zeitentwicklung in fiktiver Zeit werden vorgestellt. Im Gegensatz zur Propaga-
tion in physikalischer Zeit tritt hier keine Langzeitdispersion auf, vielmehr sind sämtliche
Wellenfunktionenen π-periodisch in der fiktiven Zeit. Die Auswertung des bei dem Ver-
fahren auftretenden dreidimensionalen inversen Fourierintegrals geschieht vorzugsweise
mittels Monte-Carlo-Integration. Dabei wird in einem Beispiel nach 10000 Basiszustän-
den entwickelt. In Unterabschnitt 5.3.2 wird die Prozedur aus Unterabschnitt 5.3.1
für Wellenfuntionen mit magnetischer Quantenzahl m wiederholt. Zunächst werden
modifizierte Basiszustände mit scharfer magnetischer Quantenzahl m angegeben. Ihre
exakten Bewegungsgleichungen folgen durch Einsetzen der modifizierten Basiszustände
in die regularisierte Schrödingergleichung. Sie werden analytisch gelöst. Die Entwicklung
einer beliebiger Wellenfunktionen mit magnetischer Quantenzahl m nach diesen mod-
ifizierten Basiszuständen erfolgt in Analogie zu Unterabschnitt 5.3.1, d.h. man macht
sich nach der Abseparation des gemeinsamen winkelabhängigen Anteils eimϕ und des
gemeinsamen Vorfaktors ρ|m| mit ρ =

√
x2 + y2 die Darstellung der modifizierten Ba-

siszustände als “komplexe” ebene Wellen mit komplexen “Impulsen” in parabolischen
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Koordinaten zunutze. Die Entwicklung eines Gaußwellenpaketes in parabolischen Koor-
dinaten mit m = 0 nach den modifizierten Basiszuständen und seine exakte analytische
Entwicklung in der fiktiven Zeit wird vorgeführt. In Unterabschnitt 5.3.3 werden nun
modifizierte Basiszustände mit scharfen Drehimpulsquantenzahlen l,m eingeführt. Nach
diesen können in analoger Weise zu den vorigen Unterabschnitten beliebige Wellenfunk-
tionen mit den Quantenzahlen l,m entwickelt und anschließend analytisch propagiert
werden. Als Beispiel wird ein radiales Gaußpaket mit den Quantenzahlen (l,m) = (0, 0)
bzw. (l,m) = (5, 0) nach den modifizierten Basiszuständen mit den jeweiligen Drehim-
pulsquantenzahlen entwickelt und analytisch propagiert.

In Kapitel 6 wird das Wasserstoffatom in äußeren homogenen Feldern behandelt.
Dazu werden die in Kapitel 5 entwickelten Basiszustände genommen, und nach den
Methoden aus den Kapiteln 2 bis 4 propagiert. Die entwickelten Basiszustände und die
modifizierten Basiszustände mit scharfer magnetischer Quantenzahl m, die für das feld-
freie Wasserstoffatom exakte Lösungen darstellen, sind bei Anwesenheit äußerer Felder
keine exakten Lösungen mehr und werden nach dem zeitabhängigen Variationsprinzip
propagiert. Zunächst wird die Regularisierung wie in Abschnitt 5.1 basierend auf der
Einführung der Kustaanheimo-Stiefel-Koordinaten auf die Schrödingergleichung des H-
Atoms in äußeren Feldern in Abschnitt 6.1 erweitert. Insbesondere gehen wir von
senkrecht gekreuzten elektrischen und magnetischen Feldern aus. Die Regularisierung
erfolgt in analoger Weise zu Abschnitt 5.1, das Coulomb-Potential führt auf ein harmonis-
ches Potential, die äußeren Feldern ergeben anharmonische Störungen höherer Ordnung.
Die Skalierung erfolgt nun bezüglich einer effektiven Hauptquantenzahl, die reelle Werte
annehmen kann. Die fiktive Zeit, in der die Propagation erfolgt, wird als die zu der
effektiven Hauptquantenzahl konjugierte Variable eingeführt. In Abschnitt 6.2 wird
das diamagnetische H-Atom behandelt. Hier wird das Wasserstoffatom in nur einem
äußeren Feld, dem Magnetfeld, untersucht. Das System ist rotationssymmetrisch und
daher ist die Komponente des Drehimpulses lz = m entlang des Magnetfeldes erhalten.
Daher bieten sich die modifizierten Basiszustände aus Unterabschnitt 5.3.2 mit scharfer
magnetischer Quantenzahl m für die Entwicklung und Propagation einer Anfangswellen-
funktion mit gegebener magnetischer Quantenzahl an. Es zeigt sich, daß die Wahl eines
in parabolischen Koordinaten Gaußförmigen Wellenpaketes, d.h. eines Gaußförmigen
Ringes um die z-Achse, mit der gewünschten magnetischen Quantenzahl m wie in Un-
terabschnitt 5.3.2, als Startwellenfunktion gut geeignet ist. Diese Startwellenfunktion
wird nach den modifizierten Basiszuständen entwickelt, welche dann nach dem zeitab-
hängigen Variationsprinzip in der fiktiven Zeit propagiert werden. Die anharmonischen
Potentialanteile, die durch das magnetische äußere Feld hervorgerufen werden, führen
zu einer Kopplung der superponierten Basiszustände. Die numerische Lösung der Bewe-
gungsgleichungen der Parameter der modifizierten Basiszustände erfordert nach jedem
Integrationsschritt die Lösung eines linearen Gleichungssystems, dessen Dimension der
Zahl der Parameter entspricht. Die Kopplung zwischen den modifizierten Basiszuständen
ergibt sich aus den nichtdiagonalen Elementen der Matrix des Gleichungssystems, die den
Überlapp verschiedener, nach ihren Parametern abgeleiteter modifizierter Basiszustände
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enthalten. Es treten die in Kapitel 3 beschriebenen numerischen Probleme bei der Lö-
sung der Differentialgleichungen auf, d.h. die Matrix wird mit zunehmender Zahl von Ba-
siszuständen an gewissen Zeitpunkten schlecht konditioniert und die Integration wird ex-
trem langsam und kann sogar zum Stillstand kommen. Abhilfe schafft auch hier die Ein-
führung von Nebenbedingungen gemäß Kapitel 4, Abschnitt 4.3. Sie erhöhen drastisch
die Zahl der modifizierten Basiszustände, die noch ohne numerische Schwierigkeiten
propagiert werden können. Natürlich können hier nicht einige Tausende Basiszustände
wie im analytisch behandelbaren, feldfreien Fall propagiert werden, möglich sind bis zu
etwa Hundert. Die Propagation des Gaußwellenpaketes in parabolischen Koordinaten
mit m = 0, welches nach 70 modifizierten Basiszuständen entwickelt ist, wird gezeigt.
Die Autokorrelationsfunktion wird berechnet, und daraus werden durch harmonische
Inversion die Eigenwerte bestimmt. Der Vergleich der Eigenwerte mit numerisch exak-
ten zeitunabhängigen Rechnungen zeigt sehr gute Übereinstimmung. Abschnitt 6.3
widmet sich dem Wasserstoffatom in gekreuzten äußeren elektrischen und magnetischen
Feldern. Es wird angenommen daß die beiden Felder senkrecht aufeinander stehen.
Die Rotationssymmetrie ist gebrochen, und Ausgangspunkt für die Rechnungen sind
die Basiszustände, die in Abschnitt 5.2 hergeleitet wurden, d.h. die vierdimensionalen
zentrierten Gaußpakete in Kustaanheimo-Stiefel-Koordinaten, die die Nebenbedingung
erfüllen. Bei Anwesenheit der äußeren Felder sind diese Basiszustände nicht mehr ex-
akte Lösungen der Schrödingergleichung, d.h. um eine gute Näherung zu bekommen
muss eine Superposition der Basiszustände benutzt werden, um die variationelle Frei-
heit zu erhöhen. Die Superposition gemäß Unterabschnitt 5.3.1, die ein Gaußpaket in
dreidimensionalen physikalischen kartesischen Koordinaten mit beliebiger vorgegebener
Lokalisierung im Phasenraum darstellt, hat sich als Startwellenfunktion als gut geeignet
erwiesen. Die Propagation erfolgt über das zeitabhängige Variationsprinzip, und die
Bewegungsgleichungen, die in Kapitel 3 hergeleitet wurden, können weitestgehend über-
nommen werden. Es muss lediglich beachtet werden, daß die vierdimensionalen Gauß-
pakete im Ursprung zentriert sind, und es muss der besonderen Symmetrie der Breiten-
matrix Rechnung getragen werden. Die numerischen Schwierigkeiten bei der Integration
können durch die Einführung der Nebenbedingungen aus Abschnitt 4.3 verringert wer-
den. Zwei Startwellenfunktionen mit verschieden Startwerten werden propagiert. Das
Spektrum ergibt sich durch Fouriertransformation der Autokorrelationsfunktion. Die
Peaks werden mit numerisch exakten Werten verglichen und zeigen gute Übereinstim-
mung.

Kapitel 7 und Kapitel 8 wenden sich der Anwendung der Gaußwellenpaketmethode
auf Bose-Einstein-Kondensate zu. Die Beschreibung der Dynamik erfolgt über die zeitab-
hängige Gross-Pitaevskii-Gleichung. Die Nichtlinearität der Gross-Pitaevskii-Gleichung
führt im Gegensatz zu den bisher behandelten Systemen zu qualitativ verschiedenen
Verhalten der Lösungen, z.B. zu kollabierenden Wellenfunktionen. In ihrer üblichen
Form beschreibt die Gross-Pitaevskii-Gleichung die Wechselwirkung der Bosonen un-
tereinander über das kurzreichweitige Kontaktpotential. Die Stärke des Kontaktpoten-
tials kann durch Variation der Streulänge verändert werden. Für hinreichend negative
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Streulängen, d.h. für Streulängen unterhalb eines kritischen Wertes, besitzt die Gross-
Pitevskii-Gleichung keine stationären Lösungen. Bei der kritischen Streulänge tritt eine
Tangentenbifurkation auf, in der der stabile Grundzustand und ein instabiler angeregter
Zustand entstehen. Mit wachsender Streulänge entfernen sich die Energien der beiden
Zustände voneinander [32].

In Kapitel 7 wird ein Bose-Einstein-Kondensat untersucht, dessen Teilchen untere-
inander zusätzlich eine langreichweitige, isotrope, attraktive 1/r-Wechselwirkung er-
fahren. Diese wird durch die Bestrahlung des Kondensates mit 18 nichtresonanten
Lasern in einer bestimmten Anordnung erreicht [31]. Experimentell schwierig zu re-
alisieren, allerdings mit der interessanten Eigenschaft, daß keine äußere Falle benötigt
wird: Durch die attraktive 1/r-Wechselwirkung der Teilchen untereinander fängt sich
das Kondensat selbst ein. Durch Ausnutzung einer Skalierungseigenschaft bezüglich
der Teilchenzahl hängt die Dynamik des Kondensates nur noch von einem äußeren
Parameter, der skalierten Streulänge, ab. In Abschnitt 7.1 wird das zeitabhängige
Variationsprinzip in gewohnter Weise angewendet, die Nichtlinearität bereitet keine
Schwierigkeiten. Entspechend der Symmetrie des Systems wird eine zentrierte, sphärisch
symmetrische Gaußwellenfunktion verwendet. Effektiv verbleibt ein komplexer Param-
eter, der die Breite des Paketes bestimmt, zur Beschreibung der Dynamik. Die Suche
nach den stationären Lösungen der Bewegungsgleichungen ergibt die reellen stationären
Zustände der Gross-Pitaevkii Gleichung. Sie stimmen mit denjenigen überein, die aus
der zeitunabhängigen Variation des Mean-Field-Funktionals mit Gaußschen Ansatz ge-
funden wurden [32]. Wie oben erwähnt ergeben sich in Abhängigkeit von der Streulänge
keine stationären Zustände (für hinreichend negative Streulängen), ein angeregter Zus-
tand und der Grundzustand bei mittleren, negativen Streulängen, und ein Grundzustand
für positive Streulängen. Die Stabilität dieser stationaren Zustände wird in Abschnitt
7.2 dargestellt. Es wird gezeigt, daß der Grundzustand stabil, der angeregte Zustand
instabil ist [78, 79].

In Abschnitt 7.3 wird die Dynamik des Bose-Einstein-Kondensates mit 1/r-Wechsel-
wirkung untersucht, zunächst mit dem Variationsansatz in Unterabschnitt 7.3.1.
Phasenportraits des komplexen Breitenparameters werden für verschiedene Streulän-
gen gezeigt. Dazu wird der komplexe Breitenparameter in seinen Real- und Imaginärteil
aufgespalten und der Imaginärteil über den Realteil aufgetragen. In den Phasenportraits
erkennt man den Bereich stabiler Oszillationen und den Bereich, in dem die Wellenfunk-
tion kollabiert. Wie in Kapitel 2 erwähnt besitzen die Bewegungsgleichungen aus dem
zeitabhängigen Variationsprinzip eine verallgemeinerte Poissonsche Struktur und durch
Einführung einer geeigneten Parametrisierung der Testwellenfunktion nehmen die Be-
wegungsgleichungen die kanonische Form an. Die Mean-Field-Energie als Funktion der
Variationsparameter nimmt die Funktion der klassischen Hamiltonfunktion an, und die
Variationsparameter können als kanonisch konjugierte Koordinaten und Impulse inter-
pretiert werden [37]. Die Dynamik des Kondensates mit sphärischer Symmetrie läßt
sich somit als Bewegung eines klassischen Teilchens im eindimensionalen Potential in-
tepretieren. Die obigen Rechnungen werden qualitativ in Unterabschnitt 7.3.2 durch
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Zusammenfassung

numerisch exakte Rechnungen bestätigt. Die numerisch exakten Rechnungen werden
auf einem Gitter mit Hilfe der Split-Operator-Methode durchgeführt. Hierzu wird ins-
besondere die lokale Umgebung der beiden stationären Zustände untersucht. Wie er-
wartet findet man in der lokalen Umgebung des Grundzustandes stabile quasiperiodische
Schwingungen des Kondensates, während man in der lokalen Umgebung des instabilen,
angeregten Zustandes beides findet: Kollabierende und oszillierende Wellenfunktionen.
Ein Phänomen das vom Gaußschen Ansatz nicht erfasst werden kann, sich aber in den
numerisch exakten Rechnungen zeigt, betrifft das Langzeitverhalten des Kondensates.
Insbesondere in der Umgebung des Grundzustandes wandelt sich die zunächst oszil-
lierende Bewegung des Bose-Einstein-Kondensates mit zunehmender Propagationsdauer
in eine expandierende Bewegung mit leichten Modulationen. Je weiter man sich vom
Grundzustand entfernt desto schneller setzt dieser Effekt ein.

Kapitel 8 behandelt die Dynamik des Bose-Einstein-Kondensates mit langreich-
weitiger, anisotroper magnetischer Dipol-Dipol-Wechselwirkung [35]. Dies kann experi-
mentell durch Kondensation von 52Cr realisiert werden [86]. Bei ausgerichteten Dipolen
ist das System rotationssymmetrisch um die Achse der Ausrichtung der Dipole, bei
entsprechender Wahl der Symmetrie des Fallenpotentials. Die relativen Stärken der
langreichweitigen Dipol-Dipol-Wechselwirkung und der kurzreichweitigen Kontaktwech-
selwirkung können durch Änderung der Streulänge über eine Feshbach-Resonanz [34]
verändert werden. Die Brechung der sphärischen Symmetrie durch die dipolare Wechsel-
wirkung erfordert ihre Berücksichtigung in der Gaußförmigen Testwellenfunktion. Somit
stehen zur Beschreibung des zentrierten zylindersymmetrischen Gaußwellenpaketes ef-
fektiv zwei komplexe Parameter zur Verfügung. Einer stellt die komplexe Breite entlang
der Zylinderachse dar, der andere die komplexe Breite senkrecht dazu. Aus Kapitel 2
und 7 ist bekannt, daß die Real- und Imaginärteile komplexer Parameter als verallge-
meinerte Koordinaten und Impulse interpretiert werden können. Das System entspricht
damit einem klassischen System mit zwei Freiheitsgraden. Hier wird in erster Linie die
Dynamik auf ihre Regularität hin untersucht. In Abschnitt 8.1 werden die Bewe-
gungsgleichungen für das Gaußpaket gemäß dem zeitabhängigen Variationsprinzip kurz
hergeleitet. Effektiv ergeben sich vier gekoppelte Differentialgleichungen für die Real-
und Imaginärteile der beiden Breitenparameter. Die Regularität von konservativen Sys-
temen mit zwei Freiheitsgraden wird am Besten mittels Poincaréschnitten untersucht.
In Abschnitt 8.2 wird die Dynamik mittels Poincaréschnitten für verschiedene Mean-
Field-Energien untersucht. Für das Verständnis nützlich ist die Vorstellung (in Analogie
zu Abschnitt 7.3.1) des Bose-Einstein-Kondensates als“Teilchen”, das sich im zweidimen-
sionalen Potential bewegt. Für hinreichend negative Streulängen hat das Potential kein
Minimum und alle Lösungen kollabieren. Bei höheren Streulängen werden in einer Tan-
gentenbifurkation ein Minimum und ein Sattelpunkt gebildet. Sie stellen den Grundzus-
tand, bzw. den instabilen angeregten Eigenzustand der Gross-Pitaevskii-Gleichung dar.
Ein Kondensat, das sich lokal in der Nähe des Minimums bewegt, kann nur dann kol-
labieren, wenn seine Mean-Field-Energie über der des Sattelpunktes liegt, da dieser auf
dem Weg zum Kollaps überquert werden muss. Vorgestellt werden Poincaréschnitte von
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Mean-Field-Energien knapp über der des Grundzustands bis zu Energien weit über der
des Sattelpunktes, bei welchen man einen sofortigen Kollaps erwarten würde. Bei En-
ergien knapp über der Minimumsenergie erhält man regelmäßige elliptische Strukturen
im Poincaréschnitt. Insbesondere findet man eine kurze periodische Bahn, die aus dem
stationären Zustand hervorgeht. Die Bahn ist von quasiperiodischen und langen peri-
odischen Bahnen umgeben. Diese Bahnen entsprechen periodisch bzw. quasiperiodisch
oszillierenden Kondensaten. Erhöht man die Energie, entstehen noch weit unterhalb
der Sattelpunktsenergie in Bifurkationen weitere periodische Bahnen. Kurz unterhalb
der Sattelpunktsenergie treten chaotische Bereiche auf, die unregelmäßig fluktuierenden
Kondensaten entsprechen, auf. Es existieren jedoch weiterhin stabile periodisch und
quasiperiodisch oszillierende Bereiche. Diese Koexistenz von regulären und chaotischen
Bereichen bleibt auch oberhalb des Sattelpunkts bestehen, allerdings verkleinern sich
mit steigender Mean-Field-Energie des Kondensates allmählich die stabilen Bereiche zu-
gunsten der instabilen, kollabierenden Bereiche. Bemerkenswerterweise finden sich noch
stabile Bereiche sogar bis zur zehnfachen Sattelpunktsenergie.
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A. Gaussian type integrals

A.1. Gaussian type moments in two dimensions

In this appendix the calculation of two-dimensional integrals of the form

I(n, l) =

∫
dx dy xnyl exp[A1x

2 + A2y
2 + A3xy + b1x+ b2y + c], n, l ∈ N (A.1)

is presented. Integrals of the form
〈
gl|xmyn|gk

〉
as they appear in eq. (3.28) can be easily

brought into the form (A.1). The integration can be performed by using integration by
parts, i.e. the integral in equation (A.1) can be written in the form∫

dx dy xn−1yl

(
d

dx
exp[. . . ]− (A3y + b1) exp[. . . ]

)
1

2A1

= −n− 1

2A1

∫
dx dy xn−2yl exp[. . . ]− A3

2A1

∫
dx dy xn−1yl+1 exp[. . . ]

− b1
2A1

∫
dx dy xn−1yl exp[. . . ].

The undesirable increase of the exponent from yl to yl+1 in the second term can again
be met by partial integration, this time on the variable y. We have∫

dx dy xn−1yl+1 exp[. . . ] =

∫
dx dy xn−1yl

(
d

dy
exp[. . . ]− (A3x+ b2) exp[. . . ]

)
1

2A2

− l

2A2

∫
dx dy xn−1yl−1 exp[. . . ]− A3

2A2

∫
dx dy xnyl exp[. . . ]

− b2
2A2

∫
dx dy xn−1yl exp[. . . ].

Altogether we obtain

I(n, l) = −n− 1

2A1

∫
dx dy xn−2yl exp[. . . ]

+

(
A3b2

4A1A2

− b1
2A1

)∫
dx dy xn−1yl exp[. . . ] +

A3l

4A1A2

∫
dx dy xn−1yl−1 exp[. . . ]

+
A2

3

4A1A2

I(n, l).
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A. Gaussian type integrals

Dividing both sides by 4A1A2 we obtain a recursive expression for the integral in equation
(A.1)

(4A1A2 − A2
3) I(n, l) = −2(n− 1)A2

∫
dx dy xn−2yl exp[. . . ]

+(A3b2 − 2A2b1)

∫
dx dy xn−1yl exp[. . . ]

+A3l

∫
dx dy xn−1yl−1 exp[. . . ], (A.2)

or by using the abbreviation for the integrals introduced in (A.1)

(4A1A2 − A2
3) I(n, l) = −2(n− 1)A2 I(n− 2, l) (A.3)

+(A3b2 − 2A2b1) I(n− 1, l) (A.4)

+A3l I(n− 1, l − 1). (A.5)

The integral I(0, 0) is known to be

I(0, 0) =
π√

A1A2 − A2
3/4

exp

[
−A2b

2
1 − A1b

2
2 + A3b1b2

4A1A2 − A2
3

+ c

]
. (A.6)

A.2. Integrals for the diamagnetic hydrogen atom

The integrals in the matrix on the left hand side of eq. (6.11) read

〈gl
m|gk

m〉 =
(m!)2π2

(−aµaν)m+1
c, (A.7)

〈gl
m|µ2|gk

m〉 = −i (m!)2π2

(−aµaν)m+2
aν(1 +m)c, (A.8)

〈gl
m|ν2|gk

m〉 = −i (m!)2π2

(−aµaν)m+2
aµ(1 +m)c, (A.9)

〈gl
m|µ4|gk

m〉 =
(m!)2π2

(−aµaν)m

(1 +m)(2 +m)

a3
µaν

c, (A.10)

〈gl
m|µ2ν2|gk

m〉 =
(m!)2π2

(−aµaν)m

(1 +m)2

a2
µa

2
ν

c, (A.11)

〈gl
m|ν4|gk

m〉 =
(m!)2π2

(−aµaν)m

(1 +m)(2 +m)

aµa3
ν

c, (A.12)
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A.2. Integrals for the diamagnetic hydrogen atom

with the notation aµ = ak
µ − (al

µ)∗, aµ = ak
µ − (al

µ)∗ and c = ei(γk−(γl)∗). The integrals on
the right hand side vector of eq. (6.11) read

〈gl
m|V (µ, ν)|gk

m〉 = i
(m!)2π2

(−aµaν)m

×(aµ + aν)(1 +m)((2 + 3m+m2)β2 + 8aµaνα)c

8a3
µa

3
ν

, (A.13)

〈gl
m|µ2V (µ, ν)|gk

m〉 =
(m!)2π2

(−aµaν)m

×
[
(1 +m)(−(1 +m)(2 +m)(aµ(2 +m) + aν(3 +m))β2)c

8a4
µa

3
ν

+
(1 +m)(−8aµaν(aµ + 2aν + (aµ + aν)m)α)c

8a4
µa

3
ν

]
, (A.14)

〈gl
m|ν2V (µ, ν)|gk

m〉 =
(m!)2π2

(−aµaν)m

×
[
(1 +m)(−(1 +m)(2 +m)(aν(2 +m) + aµ(3 +m))β2)c

8a3
µa

4
ν

+
(1 +m)(−8aµaν(2aµ + aν + (aµ + aν)m)α)c

8a3
µa

4
ν

]
. (A.15)
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A. Gaussian type integrals

A.3. Integrals for the hydrogen atom in crossed electric
and magnetic fields

Using the notation aµ = ak
µ − (al

µ)∗, aµ = ak
µ − (al

µ)∗, c = ei(γk−(γl)∗) and h = 1/(a2
x +

a2
y − aµaν)

2 the elements of the matrix on the left hand side in eq. (6.17) read

I lk
11 = 〈gl|gk〉 = c/(a2

x + a2
y − aµaν),

I lk
12 = 〈gl|(u2

1 + u2
2)|gk〉 = −icaνh,

I lk
13 = 〈gl|(u2

3 + u2
4)|gk〉 = −icaµh,

I lk
14 = 〈gl|(u1u3 − u2u4)|gk〉 = 2icaxh,
I lk
15 = 〈gl|(u1u4 + u2u3)|gk〉 = 2icayh,
I lk
22 = 〈gl|(u2

3 + u2
4)

2|gk〉 = −2a2
νI

lk
11h,

I lk
23 = 〈gl|(u2

1 + u2
2)(u

2
3 + u2

4)|gk〉 = −(aµaν + a2
x + a2

y)I
lk
11h,

I lk
24 = 〈gl|(u2

1 + u2
2)(u1u3 − u2u4)|gk〉 = 4aνaxI

lk
11h,

I lk
25 = 〈gl|(u2

1 + u2
2)(u1u4 + u2u3)|gk〉 = 4aνayI

lk
11h,

I lk
33 = 〈gl|(u2

3 + u2
4)

2|gk〉 = −2a2
µI

lk
11h,

I lk
34 = 〈gl|(u2

3 + u2
4)(u1u3 − u2u4)|gk〉 = 4aµaxI

lk
11h,

I lk
35 = 〈gl|(u2

3 + u2
4)(u1u4 + u2u3)|gk〉 = 4aµayI

lk
11h,

I lk
44 = 〈gl|(u1u3 − u2u4)

2|gk〉 = 2(a2
y − 3a2

x − aµaν)I
lk
11h,

I lk
45 = 〈gl|(u1u3 − u2u4)(u1u4 + u2u3)|gk〉 = −8axayI

lk
11h,

I lk
55 = 〈gl|(u1u4 + u2u3)

2|gk〉 = 2(a2
x − 3a2

y − aµaν)I
lk
11h.

(A.16)

The right hand side vector in eq. (6.17) is split into its diamagnetic and Coulomb terms
whose components read

Iv1a =
i(aµ+aν)((aµaν+2(a2

x+a2
y))β2+4(a2

x+a2
y−aµaν)2α)

4(a2
x+a2

y−aµaν)4
c,

Iv2a =
[2a2

µa2
ν+(a2

x+a2
y)(9a2

ν+2(a2
x+a2

y))+aµaν(3a2
ν+8(a2

x+a2
y))]β2

4(a2
x+a2

y−aµaν)5
c

+
4(a2

x+a2
y−aµaν)2(aν(aµ+2aν)+a2

x+a2
y)α

4(a2
x+a2

y−aµaν)5
c,

Iv3a =
[3a3

µaν+8aµaν(a2
x+a2

y)+2(a2
x+a2

y)2+a2
µ(2a2

ν+9(a2
x+a2

y))]β2

4(a2
x+a2

y−aµaν)5
c

+
4(a2

x+a2
y−aµaν)2(aµ(2aµ+aν)+a2

x+a2
y)α

4(a2
x+a2

y−aµaν)5
c,

Iv4a =
−(aµ+aν)ax(3(aµaν+a2

x+a2
y)β2+4(a2

x+a2
y−aµaν)2α)

(a2
x+a2

y−aµaν)5
c,

Iv5a =
−(aµ+aν)ay(3(aµaν+a2

x+a2
y)β2+4(a2

x+a2
y−aµaν)2α)

(a2
x+a2

y−aµaν)5
c,

(A.17)
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A.4. Integrals for Bose-Einstein condensates with 1/r interaction

and the terms of the electric field and the paramagnetic contribution are obtained to be

Iv1b =
(2(aµ+aν)(ak

yaxβ−ak
xayβ+axζ))

(−aµaν+a2
x+a2

y)3
c,

Iv2b =
(−2i(2aµaν+3a2

ν+a2
x+a2

y)(ak
yaxβ−ak

xayβ+axζ))

(−aµaν+a2
x+a2

y)4
c,

Iv3b =
(−2i(3a2

µ+2aµaν+a2
x+a2

y)(ak
yaxβ−ak

xayβ+axζ))

(−aµaν+a2
x+a2

y)4
c,

Iv4b =
(2i(aµ+aν)(−6ak

xaxayβ+ak
y(aµaν+5a2

x−a2
y)β+(aµaν+5a2

x−a2
y)ζ))

(−aµaν+a2
x+a2

y)4
c,

Iv5b =
(−2i(aµ+aν)(ak

x(aµaν−a2
x+5a2

y)β−6axay(ak
yβ+ζ)))

(−aµaν+a2
x+a2

y)4
c.

(A.18)

The right hand side vector in eq. (6.17) is the sum of two corresponding terms in eqs.
(A.17) and (A.18), i.e.

I lk
v1 = I lk

v1a + I lk
v1b, (A.19)

I lk
v2 = I lk

v2a + I lk
v2b, (A.20)

I lk
v3 = I lk

v3a + I lk
v3b, (A.21)

I lk
v4 = I lk

v4a + I lk
v4b, (A.22)

I lk
v5 = I lk

v5a + I lk
v5b. (A.23)

A.4. Integrals for Bose-Einstein condensates with 1/r

interaction

The integrals for the set of linear equations (7.9) are most simply calculated by the
following strategy. First compute 〈ψ|ψ〉, 〈ψ|Vc|ψ〉 and 〈ψ|Vu|ψ〉. The integrals 〈ψ|r2n|ψ〉,
n = 1, 2 are obtained by differentiation of 〈ψ|ψ〉, i.e.

〈
ψ|r2n|ψ

〉
= − ∂n

∂(2Ai)n
〈ψ|ψ〉 . (A.24)

And similar for the integrals containing the potentials

〈
ψ|r2nV |ψ

〉
= − ∂n

∂(4Ai)n
〈ψ|V |ψ〉 . (A.25)
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The different factor of two result from the nonlinear potentials Vu and Vc, which are
quadratic in ψ. Altogether we obtain

〈ψ|ψ〉 =
π3/2

2
√

2
e−2γiA

−3/2
i , (A.26a)

〈ψ|r2|ψ〉 =
3π3/2

8
√

2
e−2γiA

−5/2
i , (A.26b)

〈ψ|r4|ψ〉 =
15π3/2

32
√

2
e−2γiA

−7/2
i , (A.26c)

〈ψ|Vc|ψ〉 =
π5/2

2
ae−4γiA

−3/2
i , (A.26d)

〈ψ|Vu|ψ〉 = −π
5/2

4
e−4γiA

−5/2
i , (A.26e)

〈ψ|r2Vc|ψ〉 =
3π5/2

16
ae−4γiA

−5/2
i , (A.26f)

〈ψ|r2Vu|ψ〉 = −5π5/2

32
e−4γiA

−7/2
i . (A.26g)

A.5. Integrals for Bose-Einstein condensates with
dipolar interaction

Now the integrals related to dipolar BEC are given. All integrals in eq. (8.7) are obtained
from the the integrals I00 and IV 00 by differentiation with respect to the imaginary parts
Ai

ρ and Ai
z of the complex width parameters Aρ = Ar

ρ + iAi
ρ and Az = Ar

z + iAi
z and

γ = γr + iγi . The overlap integral is

I00 =
〈
χ
∣∣∣χ〉 =

π3/2

2
√

2Ai
ρA

i1/2
z

exp[−2γi],

and higher moments are computed by

I2n2m =
〈
ψ|ρ2nz2m|ψ

〉
=

∫
dx3ρ2n+1z2me−2Ai

ρρ2−2Ai
zz2−2γi

=
1

(−2)n+m

∂n

(∂Ai
ρ)

n

∂m

(∂Ai
z)

m
I00. (A.27)
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The integrals of the matrix on the left hand side of eq. (8.7) read

I00 =
k

Ai
ρ

√
Ai

z

, (A.28a)

I20 =
k

2(Ai
ρ)

2
√
Ai

z

, (A.28b)

I02 =
k

4Ai
ρA

i
z

√
Ai

z

, (A.28c)

I22 =
k

8(Ai
ρ)

2Ai
z

√
Ai

z

, (A.28d)

I40 =
k

2(Ai
ρ)

3
√
Ai

z

, (A.28e)

I04 =
3k

16Ai
ρ(A

i
z)

2
√
Ai

z

, (A.28f)

with k = (π)3/2e−2γi
/(2
√

2). The entries on the right hand side are a bit lengthy. For
a better lucidity the potential contributions are split into the trapping part Vt, the
scattering part Vc and the dipolar part Vd. The trap contributions read

IVt00 = γ2
ρI20 + γ2

zI02 , (A.29a)

IVt20 = γ2
ρI40 + γ2

zI22 , (A.29b)

IVt02 = γ2
ρI22 + γ2

zI04 . (A.29c)

The nonlinear scattering term gives

IVc00 =
2
√

2πkae−2γi

Ai
ρ

√
Ai

z

, (A.30a)

IVc20 =
πkae−2γi

√
2(Ai

ρ)
2
√
Ai

z

; , (A.30b)

IVc02 =
πkae−2γi

2
√

2Ai
ρA

i
z

√
Ai

z

, (A.30c)

which could be obtained by

IVc2n2m = (−1

4
)n+m ∂n

(∂Ai
ρ)

n

∂m

(∂Ai
z)

m
IVc00. (A.31)
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A. Gaussian type integrals

The dipolar terms are

IVd00
=

e−4γi
π5/2

1 + 2Ai
z

Ai
ρ
−

3Ai
z arctan

»r
Ai

z
Ai

ρ
−1

–
Ai

ρ

r
Ai

z
Ai

ρ
−1


6
√
Ai

z

(
−Ai

z − Ai
ρ

) , (A.32a)

IVd20
= −
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2 + 11Ai

ρA
i
z − 4(Ai
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48(Ai
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3
√
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+
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ρ
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, (A.32b)

IVd02
= −

e−4γi
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3 − 9(Ai
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z + 6Ai
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i
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48Ai
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i
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i
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z
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z
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ρ
− 1
])

48Ai
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i
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z
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z

, (A.32c)

obtained by (A.31). When the evolution of Ai
z(t) crosses Ai

ρ(t) at some time, the dipolar

potential parts (A.32) must locally be expanded in Taylor series at κ = Ai
z

Ai
ρ

= 1 to roughly

the third or fourth order. This is necessary, because for κ = 1 terms like “0
0
” occur in

the dipolar interaction, which present a removable discontinuity. However, for numerical
reasons the exact expressions (A.32) must be replaced by their Taylor expansions in a

region 1− ε < |A
i
z

Ai
ρ
| < 1 + ε.
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B. Reduction of the number of
parameters in the matrices B,C

The number of independent parameters of the 4 × 4 matrices Bk, Ck can be reduced
from 32 to 16 per GWP, provided the matrices Ak are of the form (5.35). This technique
allows for a reduction of the overall number of differential equations, which have to be
solved, from 33 to 17 per GWP. If Bk and Ck would have the form of Ak initially, given
by eq. (5.35), their symmetry would be destroyed during the evolution since the product
V k

2 C
k, which determines the evolution of the matrix Bk, does not preserve the symmetry

(5.35), even if V k
2 and Ck do. That is, a symmetry for Bk, Ck is searched such that it is

preserved by the product V k
2 C

k occurring in eq. (3.32), where the matrices V k
2 have the

symmetry of Ak in eq. (5.35). Such a symmetry is provided by the form

B =


b11 b12 b13 b14
−b12 b11 b14 −b13
b31 b32 b33 b34
b32 −b31 −b34 b33

 , C =


c11 c12 c13 c14
−c12 c11 c14 −c13
c31 c32 c33 c34
c32 −c31 −c34 c33

 , (B.1)

as may easily be shown by explicit multiplication. The superscript k running over all
GWPs has been omitted here. The number of independent parameters per matrix thus
has reduced from 16 to 8.

The computation of the matrix A according to the definition A = 1
2
BC−1 requires

the inversion of the matrix C. This could be accomplished numerically, however the
special symmetry of the matrix C allows for a compact analytical inversion. To this end
it is convenient to introduce an auxiliary 4× 4 matrix D whose elements are rearranged
elements of the matrix C and reads

D =


c33 −c34 −c13 −c14
c34 c33 −c14 c13
−c31 −c32 c11 −c12
−c32 c31 c12 c11

 . (B.2)

The product C1 = CD gives

C1 =


h k 0 0
−k h 0 0
0 0 h −k
0 0 k h

 , (B.3)

139



B. Reduction of the number of parameters in the matrices B,C

with h = −c13c31 − c14c32 + c11c33 + c12c34 and k = c14c31 − c13c32 + c12c33 − c11c34. Due
to the definition C1 = CD the inverse of C may easily be computed by C−1 = DC−1

1

when the inverse of C1 is known. Due to the simple structure of C1 its inverse is simply

C−1
1 =

1

h2 + k2


h −k 0 0
k h 0 0
0 0 h k
0 0 −k h

 , (B.4)

and then A = 1
2
BC−1 = 1

2
BDC−1

1 . The four independent parameters read

aµ =
(b11c33 − b14c32 + b12c34 − b13c31)h

2(h2 + k2)

+
(b14c31 + b12c33 − b11c34 − b13c32)k

2(h2 + k2)
, (B.5)

aν =
(b33c11 + b34c12 − b31c13 − b32c14)h

2(h2 + k2)

+
(b33c12 − b34c11 − b32c13 + b31c14)k

2(h2 + k2)
, (B.6)

ax =
(b13c11 + b14c12 − b11c13 − b12c14)h

2(h2 + k2)

+
(b13c12 − b14c11 − b12c13 + b11c14)k

2(h2 + k2)
, (B.7)

ay =
(b14c11 − b13c12 + b12c13 − b11c14)h

2(h2 + k2)

+
(b13c11 + b14c12 − b11c13 − b12c14)k

2(h2 + k2)
. (B.8)

The parameters aµ, aν , ax, ay are needed to build up the integrals in eq. (6.17) listed in
appendix A.3, and must be computed after every time step of integration.
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C. Split-operator method

The split-operator method (SPO) [47] provides a powerful method for numerically exact
quantum dynamics. Consider the following splitting of the time evolution operator where
we assume that the Hamiltonian can be written as a sum of a kinetic and a potential
part H = T + V

e−iτH = e−i τ
2
T e−iτV e−i τ

2
T +O(τ 3). (C.1)

The splitting is exact up to second order in τ . The Integration starts with the kinetic
part of the operator in equation (C.1) which is applied to the momentum space represen-
tation of the wave function ψ̃(p) where the action of the momentum operator is simply
multiplicative and the integration over the (half-)time step can be done analytically and
yields

ψ̃(p, t+ τ/2) = e−i p2

2m
τ
2 ψ̃(p, t). (C.2)

Then a full time step is taken with the potential part, which gives a phase shift of the
wave function in configuration space representation ψ(x).

ψ(x, t+ τ) = e−iV (x)τψ(x, t). (C.3)

The transformation between configuration and momentum space is done most efficiently
by fast Fourier transform. The last part of the integration step is to take again a half time
step of the kinetic part in momentum space. In practice multiple integration steps are
applied in succession. Two successive half time steps in momentum space are combined
in a single full time step.

The Fourier transform is approximated by a sum over discrete values given on an
equidistant grid in configuration as well as in momentum space. In one dimension the
discrete Fourier transform is written as

Ψ̃(pk, t) =

n/2∑
l=−n/2+1

Ψ(xl, t)e
−i2πpkxl∆x =

n/2∑
l=−n/2+1

Ψ(xl, t)e
−i2πkl/n∆x (C.4)

where pk = k∆p, xl = l∆x and k, l ∈ [−n/2 + 1, n/2]. The step length in momentum
space is chosen to be ∆p = 1/n∆x. The grid sizes and the number of points must be large
enough so that the wave functions vanish on the boundaries in either spaces. A check
for a converged step size τ is to observe the expectation value of the Hamiltonian, which
should be constant for a time-independent Hamiltonian. Note, that the conservation of
the norm of the wave function presents no criterion, since the algorithm is unitary and
the norm is exactly conserved.
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